期刊文献+

新DFT递推算法在涡街流量信号处理中的应用 被引量:3

New recursive DFT algorithm and its application in signal processing of vortex flowmeter
下载PDF
导出
摘要 采用压电传感器的涡街流量计在测量中容易受到工业测量现场管道振动和流体振动引起的噪声干扰,传统信号处理电路不能保证仪表在工业现场的测量精度.利用三角函数的和差公式,推导了一种新的DFT递推算法,用于计算涡街信号的功率谱,通过谱分析得到涡街频率.实验表明,这种方法用于处理涡街流量信号具有算法简单,计算量小,实时性好,实现方便等特点,能有效抵抗噪声,提高测量精度,是一种新的涡街流量信号处理方法,具有很好的实用价值. The vortex flowmeter based on piezoelectric transducer is subjected to noise disturbances caused by pipe vibrations and fluid turbulence during measurement. The traditional processing circuits in vortex flowmeter cannot ensure the measuring accuracy in industrial fields. A new recursive Discrete Fourier Transform (DFT) algorithm based on the sum-and-difference formula of trigonometric function is introduced. It can be used in the calculation of vortex signal power spectrum by which the vortex frequency is obtained. The proposed method is comparatively simple, highly efficient, real timing and convenient to realize, and being suitable for vortex signals. The experimental results proved that this method had strong anti-noise ability, high efficiency and broad application prospects.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第1期51-55,共5页 Journal of Zhejiang University:Engineering Science
关键词 涡街流量计 信号处理 傅里叶变换 DFT递推算法 流量测量 涡街频率 Algorithms Fourier transforms Turbulence Vortex flow
  • 相关文献

参考文献2

  • 1[2]MIAU J J, HU C C, CHOU J H. Response of a vortex flowmeter to impulsive vibrations[J]. Flow Meas Instrum,2000, 11:41-49.
  • 2[4]AMADI-ECHENDU J E, ZHU Heng-jun, HIGHAM E H. Analysis of signals from vortex flowmeters[J]. Flow Meas Instrum ,1993, 4(4):225-231.

同被引文献24

  • 1Cheremisinoff N P, Cheremisinoff P N. Instrumentation for process engineering[M]. Lancaster, U.S.A: Technomic Publishing Company, 1987.
  • 2Yamasaki H. Progress in hydrodynamic oscillator type flowmeters[J]. Flow Meas Instrum, 1993, 4(4): 241-247.
  • 3Hans V, Poppen G, VON Lavante E, et al. Vortex shedding flowmeters and ultrasound detection: signal processing and influence of bluff body geometry[J]. Flow Meas Instrum, 1998, 9(2): 79-82.
  • 4VON Lavnte E, Perpeet S, Hans V, et al. Optimization of acoustic signals in a vortex-shedding flowmeter using numerical simulation [J]. Int J of Heat and Fluid Flow, 1999, 20(4): 402-404.
  • 5Hans V, Windorfer H. Comparison of pressure and ultrasound measurements in vortex flowmetrers[J]. Measurement, 2003, 33(2):121-133.
  • 6Miau J J, Yang C C, Chou J H, et al. A T-shaped vortex shedder for a vortex flowmeter[J]. Flow Meas Instrum, 1993, 4(4): 259-267.
  • 7Sophie G D. Linearity of the vortex meter as a function of fluid viscosity[J]. Flow Meas Instrum, 1995, 6(3): 235-238.
  • 8AMADI-ECHENDU J E, ZHU Heng-jun, HIGHAM E H. Analysis of signals from vortex flow meters[J]. Flow Measurement and Instrumentation, 1993,4(4): 225-231.
  • 9HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[A]. Proceedings of the Royal Society of London[C]. London: [s. n.]. 1998,454: 899-995.
  • 10VELTCHEVA A D. Wave and group transformation by a Hilbert spectrum[J]. Coastal Engineering Journal, 2002,44(4): 283-300.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部