摘要
得到了如下定理:设p,q是奇素数,且q<p,则pq2阶群G的自同构群有以下5种情形:(1)|Aut(G1)|=q(q-1)(p-1),且Aut(G1) Cp-1×Cq(q-1);(2)|Aut(G2)|=(q2-1)(q2-q)(p-1),且Aut(G2) GL(2,q)×Cp-1;(3)|Aut(G3)|=pq(p-1),且Aut(G3) Cq×Hol(Cp);(4)|Aut(G4)|=pq(p-1)(q-1),且Aut(G4) Hol(Cp)×Hol(Cq);(5)|Aut(G5)|=p(p-1),且Aut(G5) Hol(Cp).
The precise structure of the automorphism groups of groups of order pq2 is described, where p and q are odd primes and q<p. That is, Aut(G) satisfies one of the following conditions: (1) |Aut(G1)|=q(q-1)(p-1), Aut(G1)Cp-1×Cq(q-1); (2) |Aut(G2)|=(q2-1)(q2-q)(p-1), Aut(G2)GL(2,q)×Cp-1; (3) |Aut(G3)|=pq(p-1), Aut(G3)Cq×Hol(Cp); (4) |Aut(G4)|=pq(p-1)(q-1), Aut(G4)Hol(Cp)×Hol(Cq); (5) |Aut(G5)|=p(p-1), Aut(G5)Hol(Cp).
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第1期15-17,共3页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10171074)
教育部优秀年轻教师基金资助项目.