期刊文献+

纳米厚度氮化硼薄膜的场发射特性 被引量:2

Field Emission Characteristics of BN Thin Films with Nanometer Thickness
下载PDF
导出
摘要 利用射频磁控溅射方法,在n型(100)Si基底上沉积了不同厚度(54~135nm)的纳米氮化硼(BN)薄膜。红外光谱分析表明,BN薄膜结构为六角BN(h BN)相(1380cm-1和780cm-1)。在超高真空系统中测量了不同膜厚BN薄膜的场发射特性,发现BN薄膜的场发射特性与膜厚关系很大,阈值电场随着厚度的增加而增大。由于BN薄膜和Si基底界面间存在功函数差,使得Si基底中电子转移到BN薄膜的导带,在外电场作用下隧穿BN表面势垒,发射到真空。 Nanometer Boron Nitride(BN) thin films with various thickness(54~135nm) were prepared on the (100)oriented surface of nSi(0.008~0.02Ω·m) by r.f. magnetic sputtering physical vapor deposition(PVD). There were only two absorption peaks of hBN at about 1 380 cm-1 and 780 cm-1 by Fourier transform infrared spectra for the BN thin films. The field emission characteristics of thin BN films were measured in a super high vacuum system. It is found that the field emission characteristics of thin BN films depends evidently on the thickness of the films. The threshold voltage increases with the increase of the thickness in nanometer thickness range. This is attributed to the work function difference between BN thin film and Si substrate. Electrons are transferred from substrate Si to conduction band of BN thin film, and are emitted from BN to vacuum tunneling through the potential barrier at the surface of the BN thin film under exterior electric field action. 
出处 《液晶与显示》 CAS CSCD 2003年第1期10-13,共4页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金资助项目(59831040)
关键词 纳米氮化硼薄膜 场发射特性 薄膜厚度 功函数 场发射平板显示器 thin BN films field emission thickness work function
  • 相关文献

参考文献3

二级参考文献18

  • 1[1]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
  • 2[2]Cornwell C F,Wille L T.Proposed growth mechanism of single-walled carbon nanotubes[J].Chem.Phys.Lett.,1997,278(2):262-266.
  • 3[3]Menon M,Andriotis A N,Froudakis G E.Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls[J].Chem.Phys.Lett.,2000,320(5):425-434.
  • 4[4]Hernández E,Ordejón P.Tight binding molecular dynamics studies of boron assisted nanotube growth[J].J.Chem.Phys.,2000,113(11):3814-3821.
  • 5[5]Brenner D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond film[J].Phys.Revi.B,1990,42(12):9485-9489.
  • 6[6]Iijima S,Brabec C,Maiti A,Bernholc J.Structural flexibility of carbon nanotubes[J].J.Chem.Phys.,1996,104(5):2089-2092.
  • 7[7]Cornwell C F,Wille L T.Low-energy properties of carbon nanotubes[J].Solid State Comm.,1997,101(5):555-559.
  • 8[8]Girifalco L A.Molecular properties of C60 in the gas and solid phases[J].Phys.Chem.,1992,96(7):858-861.
  • 9[9]Smith G D,Jaffe R.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J].Phys.Chem.,1996,100(23):9624-9627.
  • 10[10]Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscale graphitic tubules [J].Phys.Rev.B,1992,45(21):12592-12595.

共引文献23

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部