期刊文献+

智能学习中的知识表示和知识聚类 被引量:4

Knowledge Representing and Clustering in Intelligent Learning
下载PDF
导出
摘要 e-Learning中的智能化学习一直是诸多网络教育研究人员努力去解决而至今尚未有合适解决方案的一个问题。采用传统的导航方式或搜索引擎方式引导学习过程有着自身固有的缺陷。一种新的引导方式是:基于知识指定的表示和组织方式,以知识项和知识交流域(上下文)的映射来引导学习过程。这种方式以知识项得到领域专家认证为前提,通过关联规则对知识进行有效的聚类,给出一系列相关的知识项(相关案例或有关内容),向学习者提供建议性的学习内容,方便了关联学习。 Intelligent learning is an issue that network-based education reseachers trying to tackle without suitable solution.Guiding a learning process by a traditional navigator or by searching engine has the inherent weaknesses.This paper has a new effective solution:guiding the learning process through the mapping of knowledge items to knowledge domain,which is based on the definite way of knowledge organizing and presenting.This method,after the authority of knowledge by domain -specific expert,applies an association rule to cluster definited knowledge items ,to present similarities or associations,and to give the learner an intelligent clue of association learnig.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第7期75-77,共3页 Computer Engineering and Applications
关键词 智能学习 知识表示 关联规则 知识库 聚类算法 知识获取 网络教育 人工智能 Intelligent Learning,Knowledge representing,Association Rule,Clustering Acquiring
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]Broder,A.Z.,Glassman,S.C.,Manasse,M.S.Syntactic clustering of the Web.Technical Report,1997-015,Palo Alto,CA:Digital Systems Research Center (Digital),1997.
  • 2[2]Chang,C.H.,Hsu,C.C.Customizable multi-engine search tool with clustering.Computer Network and ISDN Systems,1997,29(8-13):1217~1224.
  • 3[3]Chen,L.,Katya,S.Webmate:a personal agent browsing and searching.In:Sycara,K.P.,Wooldridge,M.,eds.Proceedings of the 2nd International Conference on Autonomous Agents.New York:ACM Press,1998.132~139.
  • 4[4]Ron,W.,Bienvenido,V.,Mark,A.S.,et al.Hypursuit:a hierarchical network search engine that exploits content-link hypertext clustering.In:ACM,ed.Proceedings of the 7th ACM Conference on Hypertext.New York:ACM Press,1996.180~193.
  • 5[5]Ackerman,M.,Billsus,D.,Gaffney,S.,et al.Learning probabilistic user profiles.AI Magazine,1997,18(2):47~56.
  • 6[6]Cheeseman,P.,Stutz,J.Bayesian classification (autoclass):theory and results.In:Fayyad,U.M.,Piatetsky-Shapiro,G.,Smyth,P.,et al.,eds.Advances in Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI/MIT Press,1996.153~180.
  • 7[7]Agrawal,R.,Srikant,R.Fast algorithm for mining association rules.In:Jorge,B.B,Matthias,J.,Carlo,Z.,eds.Proceedings of the 20th International Conference on Very Large Databases.Santiago:Morgan Kaufmann Publishers,Inc.,1994.487~499.

共引文献40

同被引文献52

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部