期刊文献+

枝晶凝固过程溶质再分配的数值模型和快速算法 被引量:5

Numerical model and rapid algorithm of solute redistribution i n dendritic solidification
下载PDF
导出
摘要 提出了固熔体合金在枝晶凝固过程中的溶质再分配模型 ,模型由扩散微分方程和溶质守恒方程组成 ,使用Crank Nicholson有限差分法和Trapezoid法则离散控制方程 ,导出了一个计算固相内溶质界面浓度的迭代公式 ,在TDMA算法基础上 ,仅用一步迭代 ,就可以解出凝固过程中的溶质浓度场。用此算法分析了Al 4 .5Cu和Al 1.5Cu 3Zn等合金的溶质再分配过程 ,通过与实验解析解的比较 ,发现数值模型和算法是严密内洽的。 Solute redistribution is controlled by solut e partition and solute diffusion during dendritic solidification of the solid solu tion alloy and is described by solute diffusion differential equation and specie s conserve equation. The Crank Nicholson finite difference scheme and the trapez oid law were used to solve these equations; a new iteration equation was derived to calculate the solute concentration at the solid and liquid interface. The so lute concentration field during solidification was calculated on TDMA-based rap id algorithm. The solute redistribution of Al-4.5Cu and Al-1.5Cu-3Zn alloys w as analyzed by the algorithm and compared with the results of analytical formula , and it is proved that the numerical model is efficient and consistent.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2003年第1期147-152,共6页 The Chinese Journal of Nonferrous Metals
基金 国家重点基础研究发展规划项目 (G2 0 0 0 0 672 0 2 -1)
关键词 枝晶 凝固过程 溶质再分配 数值模型 快速算法 合金 numerical model solute redistribution algorithm
  • 相关文献

参考文献14

  • 1[1]Kraft T, Chang Y A. Predicting microstructure and micro-segregation in multi-component alloy[J]. JOM, 1997, 49(12): 20-28.
  • 2[2]Nastac L. Analytical modeling of solute redistribution during the initial unsteady unidirectional solidification of binary dilute alloys[J]. Journal of Crystal Growth, 1998, 193: 271-284.
  • 3[3]Voller V R. A semi-analytical model of micro segregation in a binary alloy[J]. Journal of Crystal Growth, 1999, 197: 325-332.
  • 4[4]Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion[J]. Metallurgical Transactions A, 1981, 12A: 965-971.
  • 5[5]Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting[J]. Metallurgical and Materials Transactions B, 1982, 13B: 259-265.
  • 6[6]JIE W. The shift of the growth interface during the Bridgman process due to the solute redistribution[J]. Journal of Crystal Growth, 2000, 219: 379-384.
  • 7[7]JIE W, LI Y J, LIU X H. Solute redistribution during the accelerated crucible rotation Bridgman growth of Hg1-xMnxTe[J]. Journal of Crystal Growth, 1999, 205: 510-514.
  • 8[8]JIE W, MA D. Solute redistribution and growth velocity response in directional solidification process[J]. Journal of Crystal Growth, 1996, 169: 170-174.
  • 9[9]Combeau H, Drezet J M, Mo A, et al. Modeling of micro-segregation in macro-segregation computation[J]. Metallurgical and Materials Transactions A, 1996, 27A: 2314-2327.
  • 10[10]Voller V R. A numerical scheme for solidification of an alloy[J]. Canadian Metallurgical Quarterly, 1998, 37(3-4): 169-177.

同被引文献33

  • 1刘俊玲,庞富祥,郭治安.感应重熔Ni60自熔合金涂层的组织结构[J].煤炭学报,1995,20(2):180-183. 被引量:10
  • 2Goodman T R. The heat-balance integral and its application to problems involving change of phase[J].Trans ASME, 1985, 80(3): 335-342.
  • 3Furzeland R M. A comparative study of numerical methods for moving boundary problem[J]. Journal of the Institute of Mathematics and its Applications,1980, 26(4): 419-429.
  • 4Crank J, Gupta R S. Isotherm migration method in two dimensions[J]. Int J Heat Transfer, 1975, 18:1101 - 1107.
  • 5Swaminathan C R, Voller V R. A general enthalpy method for modeling solidification processes[J]. Metal Trans B, 1992, 23B: 651 - 664.
  • 6Crank J. Free and Moving Boundary Problems[M].Oxford: Clarendon Press, 1984. 5 - 23.
  • 7Ockendon J R, Hodgkins W R. Moving Boundary Problems in Heat and Diffusion (second ed)[M]. Oxford: Clarendon Press, 1987. 117 - 138.
  • 8Saitoh T. Numerical method for multi-dimensional freezing problems in arbitrary domains[J]. ASME, J of Heat Transfer, 1978, 100: 294-299.
  • 9Crank J, Crowley A B. On an implicit scheme for the isotherm migration method along orthogonal flow lines in two dimensions[J]. Int J Heat Transfer,1979, 22: 1331- 1337.
  • 10Rabin Y, Shitzer A. Numerical solution of the multidimensional freezing problem during cryosurgery[J].J of Biomechanical Engineering, Transactions of the ASME, 1998, 120(1): 32-37.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部