期刊文献+

一种基于SDTS的HMM训练算法 被引量:8

A HMM Training Algorithm Based on SDTS
下载PDF
导出
摘要 用传统的BW算法训练语音识别系统的HMM需要大量的语音数据。本文在假设声学模型系统的子空间捆绑结构(SDTS)为己知的前提下,提出了一种新的训练算法,可以有效地减少系统对训练数据的需求。理论分析和仿真表明,与传统的BW算法比较,新的训练算法(IBW)可压缩模型参数15倍,从而可大量地减少训练数据。尽管新算法要用到系统的先验知识,但它还是显示了许多优越性。 It generally requires a large number of speech data for a speech recognition system to train HMM by the BW algorithm. In tin's paper we devise a new training algorithm (we call it IBW algorithm) with the aim to reduce some of training dara. assuming on a prior knowledge of the subspace distribution tying structure of the system (SDTS). Our computer simulation and theoretical analysis show that IBW algorithm can reduce model parameter roughly 15 times and decrease requirement of speech data to train HMMs but with no loss in word accuracy compared with traditional BW algorithm.
出处 《信号处理》 CSCD 2003年第1期40-43,共4页 Journal of Signal Processing
关键词 语音识别系统 HMM训练算法 SDTS 声学模型 隐马尔可夫模型 鲁棒性 hidden Markov model Baum-Welch algorithm subspace distribution tying structure training
  • 相关文献

参考文献5

  • 1B. Mak, E. Bocchieri. Direct training of subspace distribution clustering hidden Markov model. IEEE Trans. Speech Audio Processing, 2001, 9(4): 378-387.
  • 2E. Bocchieri, B. Mark. Subspace distribution clustering for continuous observation density hidden Markov models. Proc. 5th Eur. Conf. Speech Communication Technology, 1997, 1: 107-110.
  • 3J. R.Bellegarda, D. Nahamoo. Tied mixture continuous parameter modeling for speech recognition. IEEE Trans. Acoustics, Speech, Signal Processing, 1990,38:2033 -2206.
  • 4S. Tadahashi, S. Sagayama. Four-level tied-strucutre for efficient representation of acoustic modeling. Proc. IEEE Int. Conf. Acoustics, Speech, Signal processing, 1995,1 : 520-523.
  • 5L. Rabiner, B.H.Juang. Fundamentals of Speech Recognition. USA: Prentice-Hall, 1993.

同被引文献50

  • 1Huang X,Jack M A. Semi-continuous hidden markov models for speech signals. Journal of computer speech and language,1989,3(3) :239~251
  • 2Bocchieri E,Mark B.Subspace distribution clustering hidden markov model. IEEE Trans. Speech and Audio Processing ,2001,9(3):264~275
  • 3Bellegarda J R,Nahamoo D. Tied mixture continuous parameter modeling for speech recognition. IEEE Trans. Acous. ,Speech,Signal Processing,1990,38(12):2033~2045
  • 4姚天任.数字语音处理.武汉:华中理工大学出版社,1 992.59-81
  • 5Rabiner L,Juang B H. Fundamentals of speech recognition. Englewood Cliffs, NJ: Prentice-Hall, 1993.87~101
  • 6[1]L.E.Baum,T.Petrie.Statistical inference for prob-abilistic function of finite state Markov chains [J].Annals of Math. Statistic,1996,(6):1554-1563.
  • 7[2]L.E.Baum,J.A.Egon.An inequality with applic-ations to statistical estimation for probabilisticfunctions of a Markov process and to a model for ecology [J].Bull.Amer. Meteorology , 1967,(2):360-363.
  • 8[3]L.Rabiner.A tutorial on hidden Markov modelsand selected applications in speech recognition[J].Proc. IEEE,1989,(2) :257-286.
  • 9[4]L.E.Baum,T.Petrie.A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[J].Annals of Math. Statistic.1970,(1):164-171.
  • 10[5]L.E.Baum.An inequality and associated maximi-zation technique in statistical estimation for proba-bilistic functions of Markov processes[J].Inequali-ties,1970,(1):1-8.

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部