期刊文献+

大肠杆菌碱性磷酸酶的体外定向进化研究 被引量:13

The In vitro Directed Evolution of E.coli Alkaline Phosphatase
下载PDF
导出
摘要 大肠杆菌碱性磷酸酶 (E .colialkalinephosphatase,EAP ,EC 3 1 3 1)是一个非特异性二聚体磷酸单酯酶 .采用易错聚合酶链反应 (errorpronePCR)的方法 ,在原有高活力突变株的基础上 ,对EAP远离活性中心催化三联体的区域进行定向进化 ,经两轮errorpronePCR ,获得催化活力较亲本D10 1S突变株提高 3倍、较野生型酶提高 35倍的进化酶 4 186 ,并对该酶的催化动力学特征进行了分析 .进化酶基因的DNA测序表明 4 186含两个有义氨基酸置换 :K16 7R和S374C ,二者既不位于底物结合位点 ,也不位于酶的金属离子结合位点 . The evolution of phoA gene fragment distant from the Asp101-Ser102-Ala103 encoding region to increase the catalytic activity of EAP with a single mutant D101S as parent was directed. Through two cycles of error prone PCR, coupled with a sensitive screening method, an evolved variant 4-186 was obtained. Its catalytic activity was 3-fold higher than that of D101S parent and 35-fold more active than wild-type EAR The kinetic analysis indicated that the evolved enzyme exhibits a higher substrate binding ability and a higher catalytic efficiency than the D101S parent enzyme. DNA sequence revealed that 4-186 contains two amino acid substitutions, K167R and S374C, both of which locate neither the substrate-binding sites nor the metal-binding sites of EAP.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2003年第1期89-94,共6页 Progress In Biochemistry and Biophysics
关键词 大肠杆菌 碱性磷酸酶 体外定向进化 催化活力 directed evolution error prone PCR E. coli alkaline phosphatase catalytic activity
  • 相关文献

参考文献18

  • 1Arnold F H. Directed evolution: creating biocatalysts for the future. Chem Eng Sci, 1996, 51(23): 5091~5102
  • 2徐卉芳,张先恩,张用梅,A.E.G.CASS.体外分子定向进化研究进展[J].生物化学与生物物理进展,2002,29(4):518-522. 被引量:28
  • 3Stemmer W P C. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994, 370(4): 389~391
  • 4Oue S, Okamoto A, Yano T, et al. Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem, 1999, 274(4): 2344~2349
  • 5Miyazaki K, Wintrode P L, Grayling R A, et al. Directed evolution study of temperature adaption in a psychrophilic enzyme. J Mol Biol, 2000, 297(4): 1015~1026
  • 6Kim E E, Wyckoff H W. Structure and function of alkaline phosphatases: structure of alkaline phosphatase. Clin Chim Acta, 1989, 186(1-2): 175~188
  • 7Holtz K M, Kantrowitz E R. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Letters, 1999, 462(1): 7~11
  • 8Mandecki W, Shallcross M A, Sowadski J, et al. Mutagenesis of conserved residues within the active site of Escherichia coli alkaline phosphatase yields enzymes with increased kcat. Protein Engig, 1991, 4(7): 801~804
  • 9Chen L, Neidhart D, Kohlbrenner W M, et al. 3-D structure of a mutant (Asp101→Ser) of E.coli alkaline phosphatase with higher catalytic activity. Protein Engig, 1992, 5(7): 605~610
  • 10Zhang X E, Zhou Y H, Zhang Z P, et al. Engineering E.coli alkaline phosphatase yields changes of catalytic activity, thermal stability and phosphate inhibition. Biocataly Biotransform, 2002, 20(6):381~389

二级参考文献18

  • 1[1]Zhang J-H, Dawes G, Stemmer W P C. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci USA, 1997, 94(9):4504~4509
  • 2[2]Chen K, Arnold F H. Enzyme engineering for nonaqueous solvent: random mutagenesis to enhance activity of sublisin E in polar organic media. Bio/Technology, 1991, 9:1073~1077
  • 3[3]You L, Arnold F H. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng, 1996, 9(1):77~83
  • 4[4]Stemmer W P C. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994, 370(4):389~391
  • 5[5]Moore J C, Jin H M, Kuchner O, et al. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J Mol Biol, 1997, 272(3):336~347
  • 6[6]Crameri A, Raillard S A, Bermudez E, et al. DNA shuffling of a family of genes from diverse species accelerates evolution. Nature, 1998, 391(3):288~291
  • 7[7]Zhao H, Giver L, Shao Z, et al. Molecular evolution by staggered extension process(StEP) in vitro recombination. Nat Biotechnol, 1998, 16:258~261
  • 8[8]Shao Z, Zhao H, Arnold F H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res, 1998, 26(2):681~683
  • 9[9]Coco W M, Levinson W E, Crist M J, et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol, 2001, 19:354~359
  • 10[10]Abecassis V, Pompon D, Truan G. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast. Nucleic Acids Res, 2000, 28(20):e88

共引文献27

同被引文献148

引证文献13

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部