期刊文献+

半离散KdV非线性方程的非零边界孤子解

The solitary wave solution of the discrete nonlinear semi - KdV equation with nonvanishing boundary condition
下载PDF
导出
摘要 为简化繁琐的、用实指数方法计算半离散KdV非线性演化方程的手工求解过程,文章采用Mathematica符号计算软件编程来求解半离散KdV非线性方程,用这种方法求解不仅得到已有的零边界的孤子解,而且还得到非零边界的孤子解. In order to predigest the process of using the real exponential approach to solve the solitary wave solution of the discrete nonlinear semi - KdV equation by hand, the mathematica software was programmed and used, thus having found the solitary wave solution with both vanishing and non - vanishing boundary conditions.
作者 潘孟美
出处 《海南师范学院学报(自然科学版)》 2003年第1期43-46,共4页 Journal of Hainan Normal University:Natural Science
关键词 半离散KdV非线性方程 非零边界孤子解 Mathemation符号计算软件 实指数方法 数学物理方程 real exponential approach the discrete nonlinear system solitary wave solution the discrete nonlinear semi - KdV equation
  • 相关文献

参考文献4

  • 1[1]Korpel A. Solitary wave formation through nonlinear coupling of waves [J] Phys. Rev. Lett, 1978,68A: 179.
  • 2[2]Hirota R. Nonlinear partial difference equations. I. a difference analogue of the korteweg - de vries equation [ J ].Phys. Soc .Jpn, 1997,43(4): 1424.
  • 3[3]Chow K W.Superposition of solitions and discrete evolution equations [J] .Physica Scripta, 1994,50:233 -237.
  • 4[4]Hirota R, Satsuma. A variety of nonlinear network equations generated from the backlund transformation for the toda lattice [ J ]. Prog. Theor. Phys. Supple, 1976,59: 64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部