期刊文献+

动量插值与完全压力校正算法及交错网格SIMPLE算法的比较 被引量:3

Comparison between SIMPLE Algorithm and Momentum Interpolation and Complete Pressure Correction Based on Non-staggered Grid System
下载PDF
导出
摘要 对流体力学数值方法进行了扼要叙述,并比较各自优缺点。概述了有限体积法处理对流项的常用方案,重点描述了近年来为解决速度与压力耦合问题而提出的基于非交错网格(或同位网格)的完全压力校正算法(CPC),并与同样基于非交错网格动量插值算法(MI)以及传统的基于交错网格的SIMPLE(Semi-implicitMethodforPressure-linkedEquations)算法进行了比较。最后用二维顶盖驱动方腔流动为例,将CPC算法与传统的SIMPLE算法进行比较。结果表明,CPC算法结果准确,且程序上实现起来容易得多。 This paper first briefly reviewed the methods of the numerical simulation in computational fluid dynamics. Secondly, the usual methods dealing with the convection terms were introduced and the complete pressure correction algorithm (CPC) was mainly presented to solve the coupling between pressure and velocity. The advantages and disadvantages of CPC, momentum interpolation(MI) and SIMPLE method based on staggered grid system were depicted. At last the Liddriven square cavity flow was exemplified. The three computational results are consistent, whereas the former two methods were carried out much more easily than the latter, particularly the complete pressure correction.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期124-128,143,共6页 Journal of East China University of Science and Technology
关键词 同位网格 动量插值 完全压力校正算法 交错网格SIMPLE算法 流体力学 数值方法 non-staggered (colocated) grid momentum interpolation complete pressure correction
  • 相关文献

参考文献2

  • 1PatankarSV.传热和流体流动的数值计算[M].北京:科学出版社,1984..
  • 2PatankarsV.传热和流体流动的数值方法[M].合肥:安徽科学技术出版社,1984..

共引文献2

同被引文献24

  • 1Xue S C, Tanner R I, Phan-Thien N. Numerical modeling of transient viscoelastic flows[J]. J Non-Newtonian Fluid Mech, 2004, 123:33-58.
  • 2Peric M, Kessler R, Scheuerer G. Comparison of finite-volume numerical methods with staggered and collocated grids[J]. Comp Fluids, 1988, 16:389-403.
  • 3Luo X L. A control volume approach for integral viscoelastic models and its application to contraction flow of polymer melts[J]. J Non-Newtonian Fluid Mech, 1996, 64:173-189.
  • 4Xue S C, Phan-Thien N, Tanner R I. Three dimensional numerical simulations of viscoelastic flows through planar contractions[J]. J Non-Newtonian Fluid Mech, 1998, 74:195-245.
  • 5Xue S C, Phan-Thien N, Tanner R I. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic swirling flows in a confined cylinder part I, method and steady flows[J], J Non-Newtonian Fluid Mech, 1999, 87:337-367.
  • 6Xue S C, Phan-Thien N, Tanner R I. Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method[J]. J Non-Newtonian Fluid Mech, 1995, 59:191-213.
  • 7Xue S C, Phan-Thien N, Tanner R I. Upwinding with deferred correction (UPDC): an effective implemen- tation of higher-order convection schemes for implicit finite volume methods[J]. J Non-Newtonian Fluid Mech, 2002, 108:1-24.
  • 8FIRAS N R, ROSLI M. Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature[J]. Experimental Thermal and Fluid Science, 2007,32( 1 ) : 14 -22.
  • 9BASUMATARY R. Thermal modeling of activated carbon based adsorptive natural gas storage system [ J ]. Carbon, 2005,43:541 - 549.
  • 10VASILIEV L L, KANONCHIK L E. Adsorbed natural gas storage and transportation vessels[ J]. International Journal of Thermal Sciences, 2000,39 ( 11 ) : 1047 - 1055.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部