期刊文献+

混沌时间序列的模糊神经网络预测 被引量:38

Prediction of the chaotic time series using neuro-fuzzy networks
原文传递
导出
摘要 设计一种新型混合模糊神经推理系统 ,该系统仅从期望输入输出数据集即可达到获取知识、确定模糊初始规则基的目的 .再利用神经网络学习能力便不难修改规则库中的模糊规则以及隶属函数和网络权值等参数 ,这样大大减少了规则匹配过程 ,加快了推理速度 ,从而极大程度地提高了系统的自适应能力 .用它对Mackey Glass混沌时间序列进行预测试验 ,结果表明利用该网络模型无论离线还是在线学习均能对Mackey Glass混沌时间序列进行准确的预测 。 A novel hybrid neural fuzzy inference system is presented. Only based on the desired input-output data pairs, are the knowledge acquisition and initial fuzzy rule sets available. Then, employing neural networks learning techniques, the fuzzy logic rules, input-output fuzzy membership functions and weights in networks can be easily tuned. So the rule matching is reduced, inferencing is accelerated, adaptability of the system is greatly improved. To illustrate the performance of the proposed neuro-fuzzy hybrid model, simulations on the chaotic Mackey-Glass time series prediction are performed. Combining either off-line or on-line learning with the proposed hybrid model, we can show that the chaotic Mackey-Glass time series are accurately predicted, and demonstrate the effectiveness of the model.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第4期795-801,共7页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :60 0 75 0 0 8)资助的课题~~
关键词 混合模糊神经推理系统 神经网络模型 模糊逻辑 混沌时间序列 预测 neural network fuzzy logic hybrid inference system chaotic time series
  • 相关文献

参考文献10

  • 1[1]Lin C T and Lee C S G 1991 IEEE Trans. Comput. 40 1320
  • 2[2]Uehara K and Fujise M 1991 IEEE Trans. Fuzzy Systems 1 205
  • 3[3]Kim J and Kasabov N 1999 Neural Networks 12 1301
  • 4[4]Li Z H et al 2001 Chin.Phys. 10 494
  • 5[5]Chen S H et al 2002 Chin.Phys. 11 233
  • 6[8]Zhang J S et al 2001 Acta Phys. Sin. 50 1248(in Chinese)[张家树等 2001 物理学报 50 1248]
  • 7[9]Wang L X and Mendel J M 1992 IEEE Trans. System, Man and Cybernetics 22 1414
  • 8[10]Mackey M C and Glass L 1977 Science 197 287
  • 9[11]Farmer J D 1982 Physica D 3 366
  • 10[12]Takens F 1981 Detecting Strange Attractor in turbulence, in Rand L and Young Lecture Notes in Mathematics(Berlin:Springer-Verlag)p366

同被引文献361

引证文献38

二级引证文献373

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部