期刊文献+

Carleson测度与一致有界特征函数

Carleson Measure and the Functions of Uniformly Bounded Characteristic
下载PDF
导出
摘要 UBC类与UBC_0类函数分别是BMOA类与VMOA类函数的亚纯推广。我们知道,对单位圆盘上的每一个解析函数,f(z),f(z)∈BMOA当且仅当(1-|z|~2)|f'(z)|~2dxdy是Carleson测度;f(z)∈VMOA当且仅当(1-|z|~2)|f'(z)|~2dxdy是消失Carleson测度。本文我们证明,对单位圆盘上的亚纯函数f(z),f(z)∈UBC_0当且仅当(1-|z|~2)f^(#2)(z)dxdy是消失Carleson测度;若f(z)∈N,则f(z)∈UBC当且仅当(1-|z|~2)f^(#2)(z)dxdy是Carleson测度;其中f~#(z)(?)|f'(z)|/(1+|f(z)|~2)。 BMOA and VMOA have been extended to the meromorphic functions as UBC and UBC_0 respectively.It is well known that for each analytic function f(z) on the unite opendisc, the followings are true: f(z)∈BMOA if and only if (1-|z|~2)|f'(z)|~2dxdy is a Carleson measure; f(z)∈VMOA if and only if (1- |z|~2)|f'(z)|~2 dxdy is a Vanishing Carleson measure.In this paper, we proved the following results, for each meromorphic function f(z) on the unite open disc, f(z)∈UBC_0 if and only if f^(#2)(z) (l-|z|~2)dxdy is a Vanishing Carleson measure; When f(z)∈N, then f(z)∈UBC if and only if f^(#2)(z) (1- |z|~2)dxdy is a Carleson measure; where f~#(z) is defined to be |f'(z)|
作者 戎艰平
机构地区 宁波大学
出处 《宁波大学学报(教育科学版)》 1988年第2期6-14,共9页 Journal of Ningbo University(Educational Science Edition)
关键词 UBC UBC0 CARLESON测度 消失Carleson测度 UBC UBC_0 Carleson measure Vanishing Carleson measure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部