摘要
选取安徽省阜阳市阜南县14个乡镇2013年1月1日-2016年12月31日呼吸系统疾病日住院就诊资料50 881例,在Spearman相关性分析的基础上,用分布滞后非线性模型与广义相加模型相结合,对呼吸系统疾病住院人数与各气象要素的相关性进行了分析,其与平均气温、相对湿度和热指数呈负相关,与平均气压、平均风速呈正相关.结果表明,热指数是比温度、湿度等单独作用更全面的气象指标.引起呼吸系统疾病发病风险增高的主要原因是低热指数,低热指数对呼吸系统疾病住院人数的影响表现为长期效应,滞后6~8 d是主要发病时间.不同季节热指数滞后效应的结果不同,夏季的低热指数易导致患病风险增加;冬季高热指数滞后8 d时易增加患病风险.
Clinic data(50 881 cases) on the diseases of the respiratory system from 2013 to 2016 were collected from 14 villages in Funan county. Based on the Spearman’s correlation analysis, the distributed lag nonlinear model and generalized additive model were employed to quantitatively analyze the impact of meteorological factors on the number of in-patients. The number series was negatively correlated with the mean temperature, relative humidity and heat index, but positively correlated with the mean air pressure and mean wind speed. The results also reflected that the heat index was a more comprehensive meteorological factor. The main cause of respiratory system diseases was a low heat index, and it had a longterm effect on the number of in-patients, and a lag of 6-8 days was the main onset time. The lag effect of heat index changed with seasons, with the low heat index in summer being easy to increase the risk;andthe effect of high temperature index in winter was obvious for 8 lag days.
作者
赵笑颜
张渊
黎檀实
李亚鹏
尹岭
尚可政
王式功
Zhao Xiao-yan;Zhang Yuan;Li Tan-shi;Li Ya-peng;Yin Ling;Shang Ke-zheng;Wang Shi-gong(Center for Meteorological Environment and Human Health,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China;General Hospital of Chinese People's Liberation Army,Beijing 100853,China;School of Atmosphere Sciences,Chengdu University of Information Technology,Chengdu 610225,China)
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第1期134-140,共7页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(91644226)
国家基础科技条件平台建设项目(NCMI-SBS17-201807
NCMI-SJS15-201807)
国家科技支撑计划项目(2012BAJ18B08)
关键词
呼吸系统疾病
热指数
滞后性
非线性
关联性
diseases of respiratory system
meteorological factor
hysteresis quality
nonlinearity
elatedness