摘要
记N=pq为n比特RSA模数,e和d分别为加解密指数,ν为p和q低位相同的比特数,即p≡qmod2ν且p qmod2ν+1。1998年,Boneh、Durfee和Frankel首先提出对RSA的部分密钥泄露攻击:当ν=1,e较小且d的低n/4比特已知时,存在关于n的多项式时间算法分解N。2001年R.Steinfeld和Y.Zheng指出,当ν较大时,对RSA的部分密钥泄露攻击实际不可行。本文的结论是当ν和e均较小且解密指数d的低n/4比特已知时,存在关于n和2ν的多项式时间算法分解N。
Let N=pq be an nbit RSA modulus, e and d be encryption and decryption exponents and ν denote the exact number of the least significant bits that p and q equal,i.e., p≡qmod 2ν and pqmod 2ν+1.In 1998, Boneh, Durfee and Frankel proposed the partial key exposure attack on RSA: for low encryption exponent RSA, given a quarter of the bits of the decryption exponent d,an adversary can recover the entire d when ν=1. However, R.Steinfeld and Y.Zheng showed in 2001 that the partial key known attack can be prevented by choosing the modulus with large ν. In this paper,the authors conclude that for low encryption exponent RSA, known as the as n/4 least significant bits of d,one can factor N in time polynomial in n and 2ν when ν is small.
出处
《信息工程大学学报》
2003年第1期5-7,共3页
Journal of Information Engineering University
基金
国家973项目(G1999035804)
国家自然科学基金项目(90204015)
河南省杰出青年基金项目(0212001400)
河南省自然科学基金项目(011105100)
关键词
部分密钥泄露攻击
LLL-算法
多项式时间算法
加密指数
解密指数
partial key exposure attack
LLL-algorithm
polynomial time algorithm
encryption exponent
decryption exponent