摘要
When the damage to a natural heritage is unavoidable, recording the natural heritage before damage may be the only way we can achieve to preserve the heritage in digital format. In this paper, we introduce a video-based tele-immersive system, called the Immersive Cockpit. It captures live videos from the interested site and recreates an immersive environment at the remote site where the user situates. With this system, users/audiences can immerse into the recreated natural heritage even the heritage no longer exists. The design goals of our system are real-time, live, low-cost and scalable. We stitch multiple video streams captured from ordinary CCD cameras to generate a panoramic video. To avoid being blocked by the supporting frame, we allow a flexible placement of cameras. This approach trades the accuracy of the generated panorama image for a larger field-of-view. The panoramic video is presented on an immersive display which covers the field-of-view of the viewer. We discuss how to correctly present the panoramic video on this non-planar immersive display screen by sweet spot relocation. We also present the result and the performance evaluation of the system.
When the damage to a natural heritage is unavoidable, recording the natural heritage before damage may be the only way we can achieve to preserve the heritage in digital format. In this paper, we introduce a video-based tele-immersive system, called the Immersive Cockpit. It captures live videos from the interested site and recreates an immersive environment at the remote site where the user situates. With this system, users/audiences can immerse into the recreated natural heritage even the heritage no longer exists. The design goals of our system are real-time, live, low-cost and scalable. We stitch multiple video streams captured from ordinary CCD cameras to generate a panoramic video. To avoid being blocked by the supporting frame, we allow a flexible placement of cameras. This approach trades the accuracy of the generated panorama image for a larger field-of-view. The panoramic video is presented on an immersive display which covers the field-of-view of the viewer. We discuss how to correctly present the panoramic video on this non-planar immersive display screen by sweet spot relocation. We also present the result and the performance evaluation of the system.
出处
《系统仿真学报》
CAS
CSCD
2003年第3期306-309,314,共5页
Journal of System Simulation