期刊文献+

用改进的区间样条小波配点法求解Burgers方程 被引量:2

The numericl solution of Burgers equation on improving algorithm of interval spline wavelet interpolation with special points
下载PDF
导出
摘要 提出了一种用两个一阶导数矩阵的乘积替代二阶导算子矩阵的新算法 .用两种不同的区间样条小波插值算法对含不同参数的 Burgers方程进行了验算 ,结果表明 ,对于稍大粘性系数的 Burgers方程 ,替代算法的震荡明显小于原算法 。 The optimal approximation property is shown when the cubic spline interval Wavelet is used in the interpolation with some special points. A new algorithm is presented in which two one-order differential matrixes are used to substitute for the two-order one. The way produces less vibration for the numerical solution of Burgers equation when the coefficient is some larger.
出处 《纯粹数学与应用数学》 CSCD 2003年第1期1-4,11,共5页 Pure and Applied Mathematics
基金 陕西省自然科学基金资助项目 (2 0 0 0 SL0 2 )
关键词 偏微分方程 区间样条小波 配点法 PDE,interval spline wavelet,point-interpolation method
  • 相关文献

参考文献4

  • 1Jiangzhoug Wang.Cubic spline wavelet bases of sobolev spaces and multilevel interpolation[J].Applied and Computational Harmonic Analysis.1996,3:154~163.
  • 2Lazaar S,et al.Wavelet algorithms for numerical resolution of PDE[J].Comput.Methods Appl.Mech.Engre.1994,116:309~314.
  • 3Heurtaux F,et al.Scale decomposition in burgers equation[M].In Wavelets:Mathematics and Applications,CRC Press,inc.1994.
  • 4王永中.小波分析在偏微分方程数值解中的应用[C].博士学位论文.西安:西安交通大学,1997.

同被引文献14

  • 1梅树立,陆启韶,张森文,金俐.偏微分方程的区间小波自适应精细积分法[J].应用数学和力学,2005,26(3):333-340. 被引量:18
  • 2李艳,刘西奎.基于L^2(0,1)~2空间Riesz基的二维小波子空间采样定理[J].山东大学学报(理学版),2007,42(4):44-49. 被引量:1
  • 3Dahmen W. Wavelet Methods for PDEs-some Recent Development[J]. J Comput Appl Math,2001, 12(8) .133-185.
  • 4Amaratunga K, Williams J R. Wavelet-Galerkin Solution for One Dimensional Partial Differential Equations[J ]. Int J for Numerical Methods in Engineering, 1994, 37(16) .2706-2716.
  • 5Deslauries G, Dubue S. Symmetric Iterative Interpolation Processes[J ]. Constr Approx, 1989,5 ( 1 ) : 49-68.
  • 6Bertoluzza S, Naldi G. A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations[J ]. Appl Comput Harmon Anal, 1996,3( 1 ) : 1-9.
  • 7Vasilyev O V, Paolucci S. A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs[J ]. J Comp Phys, 1997, 138(1):16-56.
  • 8Vasilyev O V, Bowman C. Second Wavelet Collocation Method for the Solution of Partial Differential Equations[J ]. J Comp Phys,2000,16(5) :660-669.
  • 9Goldstein D E, Vasilyev O V, Wray A A, et al. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach[ R]. In Proceedings of the Summer Program, Center for Turbulence Research, 2000.
  • 10BERTOLUZZA S, NALDI G. A wavelet collocation method for the numerical solution of partial differential equations [J ]. Appl Comput Harmon Anal, 1996, 3 ( 1 ) : 1-9.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部