期刊文献+

摄动类摆系统的总体性质及鲁棒稳定性 被引量:1

Global properties and robust stability of perturbed pendulum-like systems
下载PDF
导出
摘要 研究了一类特殊的非线性控制系统———类摆系统在线性相关参数摄动下的总体性质及鲁棒稳定性 ,运用顶点检验和鲁棒严格正实性理论 ,得到了类摆系统在上述摄动模式下双态、Lagrange稳定及Bakaev稳定的条件 .结果表明对于这类系统 ,可以通过有限检验分析其解的总体性质及鲁棒稳定性 . The global properties and robust stability of pendulumlike systems under linearly correlated parameter perturbations were studied. Based on the vertex test and robust strictly positive realness theory, sufficient conditions for dichotomy, Lagrange stability and Bakaev stability are derived for the systems in the perturbation mode. The main results show that the global properties and the robust stability of such systems can be analyzed by using the finite element test.
作者 杨莹 黄琳
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第1期8-12,共5页 Control Theory & Applications
基金 国家重点基础研究专项经费 (G19980 2 0 3 0 2) 国家自然科学基金 (10 2 72 0 0 1)资助项目
关键词 摄动类摆系统 性质 鲁棒稳定性 双态性 LAGRANGE稳定性 Bakaev稳定性 非线性控制系统 parameter perturbations pendulum_like systems dichotomy Lagrange stability Bakaev stability
  • 相关文献

参考文献6

  • 1POPOV V. Absolute stability of non-linear systems of automatic control [J]. Automation and Remote Control, 1961,22:857 - 875.
  • 2VIDYASAGAR M. Nonlinear System Analysis [ M]. Englewood Cliffs, NJ:Prentice Hall, 1993.
  • 3LEONOV G A, PONOMARENKO D V, SMIRNOVA V B. Frequency-Domain Methods for Nonlinear Analysis [ M]. Singapore:World Scientific, 1996.
  • 4LEONOV G A, SMIRNOVA V B. Stability and oscillations of solutions of integro-differential equations of pendulum-like systems [ J ].Mathematische Nachrichten, 1996, 177:157- 181.
  • 5WANG Long, HUANG Lin. Performance robustness of a class of systems with multilinearly correlated perturbations [ J ]. Science in China ( Series A ), 1995, 25 (8): 875 - 882 ( in Chinese ).
  • 6CHOCKALINGAM G, DASGUPTA S. Minimality, stabilizability and strong stabilizability of uncertain plants [J]. IEEE Trans on Automatic Control, 1993, 38(11): 1651 - 1661.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部