摘要
研究具有小时滞的线性大系统的次优控制问题 .首先将子系统状态向量增量和子系统耦合项视为大系统附加扰动输入 .再利用无滞后转换法的思想结合微分方程的逐次逼近法 ,将一个既含有时滞项又含有超前项的高阶两点边值问题分解为若干个解耦的、既不含时滞项又不含超前项的低阶两点边值问题族 .最后用最优控制的有限次逼近结果作为大系统的次优控制律 .对小时滞线性大系统而言 ,利用此方法可使计算次优控制律的迭代次数大大减少 。
The suboptimal control for linear large_scale systems with small time_delay is studied. First, all the increments of state terms and interconnected terms among subsystems are considered as additional disturbances. Then by using the non_delay transformation approach and the successive approximation method of differential equations, we transform a higher order two_point boundary value problem with time_delay and time_advance terms into a group of decoupled lower order ones without time_delay and time_advance terms. Finally, the definite iterative values of optimal solutions are taken as a suboptimal control law for the large_scale system. For the linear large_scale systems with small time_delay, iterative times computing suboptimal control law can be greatly reduced. Therefore, this approach is specially suited for the suboptimal controller design for the linear large_scale systems with small time_delay.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2003年第1期121-124,共4页
Control Theory & Applications
基金
国家自然科学基金 (60 0 740 0 1)
山东省自然科学基金 (Y2 0 0 0G0 2 )资助项目
关键词
时滞系统
最优控制
无滞后转换法
线性大系统
次优控制
large_scale systems
time_delay systems
optimal control
suboptimal control
non_delay transformation approach