期刊文献+

离散时间代数Riccati方程解矩阵的特征值分析 被引量:3

Eigenvalue analysis of solutions to discrete time algebraic Riccati equation
下载PDF
导出
摘要 针对离散时间代数Riccati方程DTARE的唯一对称正定解X的特征值 ,通过矩阵的恒等变形 ,给出了一种新的分析方法 .最后获得解X的极值特征值的上界和下界 。 The problem of eigenvalue for the single symmetric positive definite solution \$X\$ of discrete time algebra Riccati equation (DTARE) is studied. Through identical deformation of matrix, a new analytical method is given. Finally, the upper and the lower bound of the extreme eigenvalue for the solution \$X\$ of DTARE and a lower bound of trace for the solution \$X\$ of DTARE can be obtained.\;
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第1期133-135,共3页 Control Theory & Applications
关键词 离散时间代数Riccati方程 矩阵 特征值分析 对称正定解 极值特征值 discrete time algebra Riccati equation symmetrical positive definite solution extremal eigenvalue trace
  • 相关文献

参考文献6

  • 1IONESECN V, WEISS M. General matrix pencil techniques for the solution of algebraic Riccati equation:a unified approach [ J ] . IEEE Trans on Automatic Control, 1997,42(8): 1085 - 1097.
  • 2KIN S W, PARK P G, KWON W H. Lower bounds for the trace of the solution of the discrete algebraic Riccati equation [ J ]. IEEE Trans on Automatic Control, 1993,38(2): 312 - 314.
  • 3AMIR-MOEZ A R. Extreme properties of eigenvalues of a Hermitian transfermation and singular values of the sum and product of linear transformation [J]. Duke Mathematical Journal, 1956,23(2) :463 - 476.
  • 4MACFARLANE A W, OLKIN I. Inequlities: Theory of Majorization and Its Application [M]. New York: Academic, 1979.
  • 5WIKINSON J H. The Problem of Algebraic Eigenvalue [ M ]. Beijing:Science Press, 1987 (in Chinese).
  • 6CHENG Yunpeng. Matrix Theory [M]. Xi'an:Northwestem Polytechnical University Press, 1997 (in Chinese).

同被引文献28

  • 1王德玉,夏冰,陈东彦.离散时间代数Riccati方程解矩阵的上下界[J].哈尔滨理工大学学报,2005,10(6):28-31. 被引量:3
  • 2陈东彦,毕海云.离散时间代数Riccati方程解矩阵的迹的下界[C]//第二十六届中国控制会议论文集(3).北京:北京航空航天大学出版社,2007:565-567.
  • 3KWAKERNAA K, SIVAN R. Linear optimal control systems [M]. New York: Wiley, 1972.
  • 4KOMARROF N. Iterative matrix bounds and computational solutions to the discrete algebraic Riccati equation [J]. IEEE Trans on Automatic Control, 1994, 39(8) : 1676 - 1678.
  • 5GARLOFF J. Bounds for the eigenvalues of the solution of the discrete Riccati and Lyapunov equation and the continuous Lyapunov equations [J]. Int. J. Cnotrol, 1986, 43(2) : 423 -431.
  • 6AMIR A R. Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformation [ J ]. Duke Math. J., 1956, 23:463 -476.
  • 7KOMAROFF N, SHAHIAN B. Lower summation bounds for the discrete Riecati and Lyapunov equations [ J]. IEEE Trans on Automatic Control, 1992, 37 (7) : 1078 - 1079.
  • 8CHOI H H. Upper matrix bounds for the discrete algebraic Riccati equation [J]. IEEE Trans on Automatic Control, 2001 , 46(3 ) : 504 - 508.
  • 9KWAKERNAAK K,SIVAN R.Linear Optimal Control Systems[M].New York:Wiley,1972.
  • 10KWON W H,MOOM Y S,AHN S C.Bounds in Algebraic Riccati and Lyapunov Equations:a Surrey and Some New Results[J].Int J Control,1996,64(3):377 -389.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部