期刊文献+

一种小波域HMT模型参数初始化方法 被引量:5

A Parameter Initialization Method for Wavelet-Based HMT Models
下载PDF
导出
摘要 Wavelet transformation and hidden Markov model are used in wavelet-based HMT model for analyzing andprocessing images. Expected Maximization(EM) algorithm used in training model results in slow convergence. Thepersistence, exponential decay characteristics of wavelet coefficient are analyzed. A model parameter initializationmethod is proposed. This method provides reasonable initial model value, reduces training time greatly. Its applica-tion in image de-noising demonstrates is validity. Wavelet transformation and hidden Markov model are used in wavelet-based HMT model for analyzing and processing images. Expected Maximization (EM) algorithm used in training model results in slow convergence. The persistence, exponential decay characteristics of wavelet coefficient are analyzed. A model parameter initialization method is proposed. This method provides reasonable initial model value, reduces training time greatly. Its application in image de-noising demonstrates is validity.
出处 《计算机科学》 CSCD 北大核心 2003年第1期85-86,77,共3页 Computer Science
基金 国家自然科学基金(60073053) 教育部博士点基金
关键词 小波域 HMT模型 参数初始化 图像去噪 图像处理 小波理论 信号分析 Wavelet, Hidden Markov tree model, Parameter initialization, EM algorithm
  • 相关文献

参考文献4

  • 1[1]Crouse M S,Nowak R D,Baraniuk R G. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans. on Signal Processing, 1998, 46(4): 886~ 902
  • 2[2]Dempster A P,Laird N M,Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 1977,39:1 ~ 38
  • 3[3]Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998
  • 4[4]Mallat S, Zhong S. Characterization of Signals from Multiscale Edges. IEEE Trans. on Pattern Recognition Machine Intelligence,1992,14(7): 710~732

同被引文献44

  • 1肖志云,文伟,彭思龙.小波域HMT模型参数的快速估计及其在图像降噪中的应用[J].计算机应用,2004,24(12):7-10. 被引量:4
  • 2龙兴明,周静.基于EM算法的图像小波系数统计研究[J].计算机仿真,2005,22(6):71-74. 被引量:2
  • 3吴剑英,艾斯卡尔.基于小波回归估计的图像杂波抑制技术研究[J].信息技术,2006,30(9):36-39. 被引量:2
  • 4浦利,刘玉树,金伟其.基于非均衡系数小波变换的插值算法研究[J].南京理工大学学报,2007,31(3):323-326. 被引量:3
  • 5Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based Statistical Signal Processing Using Hidden Markov Models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
  • 6Choi H., Baraniuk R.. Image segmentation using wavelet-domain classification. In: Proceedings of SPIE, Denver, CO., 1999, 3816: 306~320.
  • 7Fan G.L.. Wavelet domain statistical image modeling and processing[Ph.D. dissertation]. University of Delaware, USA, 2001.
  • 8Li J., Najmi A., Gray R.M.. Image classification by a two dimentional hidden Markov model. IEEE Transactions on Signal Processing, 2000, 48(2): 517~533.
  • 9Dempster A.P., Laird N.M., Rubin D.B.. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society (Series B), 1977, 39(1): 1~38.
  • 10Bouman C.A., Shapiro M.. A multiscale random field model for Bayesian image segmentation. IEEE Transactions on Image Processing, 1994, 3(2): 162~177.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部