摘要
本文讨论定义于紧Hausdorff空间而取值于局部凸空间中抽象函数的几种积分及其它们之间的相互关系,这些积分是抽象函数Riemann积分的一般化,作为应用,给出了几类重要局部凸空间的新特征。
In this paper, several kinds of set-functions integration valued in locally convex spaces, defined in a compact Hausdorff space are defined. The relationships among them are discussed and as a result the definition and existent condition of some kind of Riemann integral of abstract function valued in locally convex spaces arc given. At last, some kinds of important locally convex spaces are described.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
1992年第2期12-16,共5页
Journal of Harbin Institute of Technology
基金
中国科学院数学所开放基金
关键词
局部凸空间
抽象集函数
积分
Radon measure
set-function
locally convex space