摘要
当前国内铁路运输行业发展迅速,需要对客运量进行准确的预测以达到合理地调度。本文以青岛市为例,根据2005年~2017年的资料,建立GRNN广义回归神经网络预测模型,将预测模型计算结果与实际对比,分析相对误差率。研究表明:GRNN神经网络预测模型误差较低,具有良好的预测效果,有利于铁路客运量的预测分析。
At present, the domestic railway transport industry is developing rapidly, so it is necessary to forecast the passenger volume accurately in order to achieve reasonable dispatch. Taking Qingdao City as an example, according to the data of population and GDP of the whole city from year 2005 to 2017, in this paper the GRNN generalized regression neural network prediction model is established, compares results of the prediction model with the actual situation are calculated, and the relative error rate is analyzed. The research shows that the prediction model of GRNN neural network has low error and good prediction effect, which is beneficial to the prediction and analysis of railway passenger volume.
作者
王小凡
朱永强
潘福全
WANG Xiaofan;ZHU Yongqiang;PAN Fuquan(Qingdao University of Technology,Qingdao 266520,China)
出处
《洛阳理工学院学报(自然科学版)》
2019年第1期40-43,50,共5页
Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金
国家自然科学基金项目(51505244)
关键词
铁路
客运量
广义回归神经网络
预测
railway
passenger volume
generalized regression neural network
prediction