期刊文献+

基于文本挖掘的95598投诉工单关键信息提取分析 被引量:7

Analysis of 95598 Complaint Workorder Key Information Extraction Based on Text Mining
下载PDF
导出
摘要 采用基于正则表达式和Python编程的文本挖掘方法,提取了国网各省市供电公司95598投诉工作单中客户描述的停电次数和实际停电次数的处理意见,对数据进行了分析。结果表明,文本挖掘技术可以有效地应用于从95598投诉文档中提取出非结构化文本数据,当出现两次或两次以上的停电时,客户往往会抱怨更多。 The text mining method based on regular expression and Python programming are used to extract the number of power cuts described by customers and the actual number of power cuts in the handling opinions in the handling of 95598 complaint work orders of CNNM, and have carried out in-depth analysis. The results show that the text mining technology can be effectively applied to the extraction of unstructured text data from 95598 complaint documents. When there are two or more power outages, customers tend to complain more.
作者 万磊 严道波 杨勇 何镇庭 邱丹 吴迪 WAN Lei;YAN Daobo;YANG Yong;HE Zhenting;QIU Dan;WU Di(State Grid Hubei Electric Power Co.,Ltd.,Wuhan 430070,China;State Grid Hubei Electric Power Co.,Ltd.Ezhou Power Supply Company,Ezhou 436000,China)
出处 《电力与能源》 2019年第1期70-72,共3页 Power & Energy
关键词 供电企业 营销管理 用户数据分析 正则表达式 文本挖掘技术 power supply enterprises marketing management user data analysis regular expressions text mining technology
  • 相关文献

参考文献2

二级参考文献94

  • 1Fayyad U M,Piatetsky-Shapiro G,Smyth P.Adavance in Knowledge Discovery and Data Mining.Cambridge MA: AAAI/MIT Press,1996
  • 2John George H.Enhancements to the data mining process: [Ph.D.Thesis].Stanford University, 1997
  • 3Rao A S.AgentSpeak(L):BDI Agents Speak Out in a Logical Computable Language.In:Proc.Eur.Workshop Model.Auto.Agents Multi-Agent World (MAAMAW-96, 7th), 1996.42~55
  • 4梁南元 郑延斌.一个汉语自动分词模型CWSM及自动分词系统PC—CWSS[J].Communications of COLIPS,1991,1(1):51-55.
  • 5Wang XiaoLong,et al.The Problem of Separating Characters into Fewest Words and Its Algorithms.Chinese Science Bulletin,1989,34 (22): 1924~1928
  • 6Salton G,Wong A,Yang C S.A Vector Space Model for Automatic Indexing.Communication of the ACM 1995,18:613~620
  • 7Mladenic D.Machine Learning on non-homogeneous, distributed text data.Doctoral Dissertation, University of Ljubljana,1998
  • 8McCallum A,Nigam K.A Comparison of Event Models for Naive Bayes Text Classification.Just Research 4616 Henry Street Pittsburgh,PA 15213
  • 9McCallum A,Nigam K.Text Classification by Bootstrapping with Keywords, EM and Shrinkage.Just Research 4616 Henry Street Pittsburgh, PA 15213
  • 10The International Journal of Artificial Intelligence.Neural Networks, and Complex Problem-Solving Technologies.http: //textmining.krdl.org.sg/APIN/TWMcfp.html, 2001

共引文献83

同被引文献40

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部