期刊文献+

可动节点复合单元的基本原理及在一维问题中的应用

BEZIER BASED COUPLING ELEMENT METHOD FOR ONE-DIMENSIONAL PROBLEMS
下载PDF
导出
摘要 着重于开发一种以常规线性单元为基底,附加中间移动节点而构成的新型高精度的复合有限单元方法。移动节点复合单元法作为一种高精度有限单元法,通过调节中间可动节点的位置改变其单元内部的场分布,从而只需少量单元即可达到较高的计算精度。由于此种复合单元的中间移动节点的形函数采用计算机图形学常用的Bezier函数,故可简称为‘Bezier复合单元’(BCE)。应用此Bezier单元对具有解析解的一维受分布载荷作用的等截面杆问题和受集中载荷作用的变截面杆问题进行模拟,并与解析解及采用常规有限单元法的模拟结果进行对照和分析。 This paper focuses on developing a new high precision finite element method by combining ordinary linear element and mobile node. The mobile node coupling element can change its internal field by adjusting the position of mobile node and achieve higher precision of solution with fewer elements. Because the shape function of the mobile node employs the Bezier function which is widely used in computer graphics, this coupling element is named as Bezier Coupling Element (BCE). The element is applied to the analysis of prismatic bars under various distributed axial loads and bars of variable cross-section under concentrated axial load. Numerical results are compared with the analytical solutions and those of conventional finite element methods to verify the present method.
作者 石刚 曾攀
出处 《工程力学》 EI CSCD 北大核心 2003年第1期53-57,共5页 Engineering Mechanics
基金 国家自然科学基金资助项目(50175060)
  • 相关文献

参考文献3

  • 1Zienkiewicz O C, Taylor R L. The finite element method (4th Edition)[M]. McGraw-Hill Book Company, 1989.
  • 2Cook R D, Malkus D S, Plesha M E. Concepts and applications of finite element analysis (3rd Edition)[M]. John Willey and Sons, 1989.
  • 3Gallagher R H, Zienkiewicz O C. Optimum structural design (theory and applications)[M]. John Wiley and Sons, 1973.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部