关于无限维线性系统在生成的紧扰动下的非指数稳定性(英文)
Non-exponential Stability of Infinite Dimensional Linear Systems under Generating Compact Perturbation
摘要
分别证明了无限维自反Banach空间和无限维Hilbert空间中的反有界C0 群和C0 等距半群在生成的紧扰动下一定不具指数稳定性 。
The authors prove that an anti bounded C 0 group in infinite dimensional reflexive Banach spaces is not exponentially stable under generating compact perturbation, and that a C 0 isometric semigroup in infinite dimensional Hilbert spaces has the same property. So the results have extended and improved Russell theorem.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第2期217-220,共4页
Journal of Sichuan University(Natural Science Edition)
基金
TheNSFofChina
参考文献6
-
1[1]Russell D L.Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[J].J.Differential Equations, 1975,19:344-370.
-
2[2]Hewitt E, Stromberg K. Real and abstract analysis[M].Springer-Verlag, Heidelberg/New York, 1965.
-
3[3]Engel K J,Nagel R.One-parameter semigroups for linear evolution equations[M]. Springer-Verlag, 1999.
-
4[4]Huang F L.Asymptotic stability of linear dynamical systems in Banach spaces[J]. Kexue Tongbao, 1983, 10:584-585.[In Chinese]
-
5[5]Huang F L.Strong asymptotic stability of linear dynamical systems in Banach spaces[J].J.Differential Equations, 1993,104(2): 307-324.
-
6[6]Goldstein J A,Wacker M.The energy space and norm growth for abstract wave equations[J]. Tbinger Berichte zur Functional analysis, Heft 10, Jahrgang 2000/2001, 76-81.
-
1胡燕,祝亭玉,黄发伦.关于无限维线性系统的小时滞鲁棒稳定性(英文)[J].四川大学学报(自然科学版),2003,40(2):221-226.
-
2于欣,刘康生,陈彭年.Banach空间中无限维线性系统的能控性[J].数学年刊(A辑),2007,28(5):589-600.
-
3钟承奎,王碧祥.无限维线性系统的有限维接触元[J].兰州大学学报(自然科学版),1994,30(2):1-4.
-
4李扬荣.M/M/1排队模型的l^1动态解及其稳定性[J].应用泛函分析学报,2000,2(2):150-154. 被引量:7
-
5崔建莲,侯晋川.关于某类2×2缺项算子矩阵的谱补[J].山西师大学报(自然科学版),1999,13(3):28-31.
-
6谢灵红,谢建华.等距半群的扰动[J].西南交通大学学报,2004,39(4):547-549.
-
7陈万义.关于有界线性系统能量受限时的精确能控性[J].天津工业大学学报,2001,20(4):49-52.