期刊文献+

关于无限维线性系统在生成的紧扰动下的非指数稳定性(英文)

Non-exponential Stability of Infinite Dimensional Linear Systems under Generating Compact Perturbation
下载PDF
导出
摘要 分别证明了无限维自反Banach空间和无限维Hilbert空间中的反有界C0 群和C0 等距半群在生成的紧扰动下一定不具指数稳定性 。 The authors prove that an anti bounded C 0 group in infinite dimensional reflexive Banach spaces is not exponentially stable under generating compact perturbation, and that a C 0 isometric semigroup in infinite dimensional Hilbert spaces has the same property. So the results have extended and improved Russell theorem.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期217-220,共4页 Journal of Sichuan University(Natural Science Edition)
基金 TheNSFofChina
关键词 非指数稳定性 Russell定理 Lebesgue-控制收敛定理 紧扰动 反有界C0-群 无限维线性系统 exponentially stable Russell theorem Lebesgue dominated convergence theorem compact perturbation anti bounded C 0 group C 0 isometric semigroup
  • 相关文献

参考文献6

  • 1[1]Russell D L.Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[J].J.Differential Equations, 1975,19:344-370.
  • 2[2]Hewitt E, Stromberg K. Real and abstract analysis[M].Springer-Verlag, Heidelberg/New York, 1965.
  • 3[3]Engel K J,Nagel R.One-parameter semigroups for linear evolution equations[M]. Springer-Verlag, 1999.
  • 4[4]Huang F L.Asymptotic stability of linear dynamical systems in Banach spaces[J]. Kexue Tongbao, 1983, 10:584-585.[In Chinese]
  • 5[5]Huang F L.Strong asymptotic stability of linear dynamical systems in Banach spaces[J].J.Differential Equations, 1993,104(2): 307-324.
  • 6[6]Goldstein J A,Wacker M.The energy space and norm growth for abstract wave equations[J]. Tbinger Berichte zur Functional analysis, Heft 10, Jahrgang 2000/2001, 76-81.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部