摘要
从测地线的共轭点、焦点的定义出发,证明了对任意具正曲率的完备二维Gauss曲面,γ:[0,+∞)→M为测地线,则存在t>0,γ(t)是γ(0)之焦点.从而说明了焦点与共轭点的差异,并对这种差异性进行了较深入的讨论.
By the definitions of the conjugate point and the focal point in a geodesic,the paper proves that for any geodesic γ:[0,+∞)→M,in a complete Gauss surface M with positive curvature,there exists t>0 such that γ(t) is a focal point of γ(0).This fact reflects the difference between the focal point and the conjugate point.Moreover,the paper discusses this difference thoroughly.
出处
《集美大学学报(自然科学版)》
CAS
北大核心
2003年第1期95-97,共3页
Journal of Jimei University:Natural Science