摘要
利用一种简便证法,证明了任何一个复正规Toeplitz矩阵可以分为两类:类型Ⅰ或类型Ⅱ。用同样的方法还证明了任何一个实正规Toeplitz矩阵,一定是以下四种类型之一:对称的;斜对称的;循环的和外循环的。
An easy proof to show that every complex normal Toeplitz matrix is classified as either of type I type II is given. In a similar fashion, it is shown that a real normal Toeplitz matrix must be one of four types: symmetric, skew - symmetric, circulant, or shew - circulant.