期刊文献+

非线性振动系统中的模态对应原理(英文)

Modal Corresponding Principle in the Nonlinear Vibration Systems
下载PDF
导出
摘要 由于系统非线性因素的存在 ,非线性模态具有许多与线性模态不同的性质 ,但非线性模态与线性模态类似 ,它同样反映了系统的一种同步运动关系 .刘练生等根据Rosenberg非线性模态理论得到了关于非线性保守系统、非线性自治系统和非线性非自治系统的模态包含原理 ,在此基础上 ,本文提出了非线性振动系统中的模态对应原理 ,并给出了模态对应原理的严格证明 .该原理指出 :无论非线性振动系统具有相似模态还是具有非相似模态 ,n个自由度的非线性振动系统至少具有n个非线性模态 ,且这n个非线性模态形式上对应于该非线性振动系统对应的线性振动系统的n个线性模态 . Although there are some different properties between nonlinear modes and linear modes because of the existence of nonlinearities in the nonlinear system, similarly, the nonlinear modes indicate a kind of synchronous motion of the system, just as the linear modes do. According to Rosenberg s nonlinear mode theory, Liu et al. (in \) presented the modal containing principles on the nonlinear conservative system, nonlinear autonomous system and nonlinear non-autonomous system. In this paper, the modal Corresponding Principle in the nonlinear vibration systems is proposed on the basis of the preceding works, and the certification on such principle is given as well. The principle suggests that the nonlinear vibration system with n degrees of freedom (DOF) have not less than n nonlinear modes, and the n nonlinear modes are formally corresponding to the n linear modes of the corresponding linear vibration system of the nonlinear one, no matter what the nonlinear vibration system possesses either similar modes or dissimilar ones. The calculated example is given to show that the principle proposed in this paper can be applied to seek the nonlinear modes that are formally corresponding to the linear modes of the corresponding linear vibration system of the nonlinear one.
出处 《湘潭大学自然科学学报》 CAS CSCD 2003年第1期106-112,共7页 Natural Science Journal of Xiangtan University
基金 中国工程物理研究院重大预研基金资助 (2 0 0 0Z0 3 0 7)
关键词 非线性振动系统 模态对应原理 非线性模态 线性模态 相似模态 非相似模态 Modal corresponding relation Nonlinear vibration system Nonlinear modes Linear modes Similar modes Dissimilar modes
  • 相关文献

参考文献2

二级参考文献21

  • 1吴志强,陈予恕,毕勤胜.非线性模态的分类和新的求解方法[J].力学学报,1996,28(3):298-307. 被引量:18
  • 2吴志强,博士学位论文,1996年
  • 3陈予恕,非线性振动系统的分叉和混沌理论,1993年
  • 4Rosenberg R M. Normal modes of non-linear dual-mode systems[ J]. J. Appl. Mech. , 1960; 27(2) : 263-268.
  • 5Rosenberg R M. On normal vibration of a general class of non-linear dual-mode systems[J]. J. Appl. Mech. , 1961; 28(2) : 275-283.
  • 6Rosenberg R M. The normal modes of nonlinear n-degree-of-freedom systems[J]. J. Appl. Mech. , 1962; 29( 1 ): 7-14.
  • 7Rosenberg R M. On nonlinear vibrations of systems with many degrees of freedom [ J ]. Advances in Applied Mechanics,1966 ; 9 : 155-242.
  • 8Vakakis A F, Rand R H. Normal modes and global dynamics of a two degree of freedom nonlinear system - Ⅰ, low energies[J]. Int. J. Nonlinear Mech. , 1992; 27(5) : 861-874.
  • 9Kauderer H. Nichtlinear meehanik[M]. Berlin: Springer, 1958:10-100.
  • 10Vakakis A F, Rand, R H. Normal modes and global dynamics of a two degree of freedom nonlinear system - Ⅱ, high energies[J]. Int. J. Nonlinear Mech., 1992; 27(5):875-888.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部