期刊文献+

基于属性值分类的特征规则的知识发现

The KDD of Characteristic Rules Based on Attribute Values Classification
下载PDF
导出
摘要 1 引言 知识发现(Knowledge discovery in database,KDD)是应用一系列技术从大型数据库或数据仓库中提取隐含的、未知的、非平凡的对决策有潜在应用价值的知识和信息的过程,提取的知识表示为概念、规则、规律、模式等形式.知识发现过程一般由三个主要的阶段组成:数据准备,数据开采,结果表达和解释[2]. This paper presents a new classification technique of data mining and knowledge discovery in any scale relational database . Based on set theory , it divides relational table into several equal value categorys based on attribute values . calculates information capacity in decision factor of the every condition attribution , eliminates surplus attributions, and erases repeat units. Then it gets strong equal value categorys of the relational table being reduced data , gets strong characteristics on the each strong equal value category, and gathers characteristic knowledge rules: It overcomes the redundancy nature, complicated nature and unfit nature to big capacity data of some classification technique at present. It is better efficiency and widespread application perspective of the most large relational databases. The discovery algorithm and an example are discussed in details.
出处 《计算机科学》 CSCD 北大核心 2002年第9期56-58,共3页 Computer Science
关键词 属性值分类 特征规则 知识发现 知识表示 数据库 KDD, Data mining , Attribute values classification , Data reduction, Characteristic rules
  • 相关文献

参考文献7

  • 1Han Jiawei ,Kamber M . Data Mining: Concepts and Techniques.Simon Fraser University, 2000
  • 2Chen M -S, et al. Data mining: an overview from database perspective. IEEE Transactions on knowledge and data engineering,1996,8(6) :866~833
  • 3Pawlak Z. Rough Sets. Theoretical aspects of reasoning about data. Now ow jeska 15/19, Warsaw . Poland. 1990
  • 4Fayyad. From data mining to knowledge discovery:An Overview.[J] Advances in Knowledge Discovery and Data Mining, AAAI/MIT press , 1996
  • 5Siberchatz. What makes patterns interesting in knowledge discovery systems. [J] IEEE transactions on Knowledge and data Engineering, 1996,8(6): 870~874
  • 6周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 7朱定华,魏媛媛,魏长华.面向属性的RST在数据挖掘中的应用[J].华中理工大学学报,2000,28(2):80-83. 被引量:3

二级参考文献4

  • 1Chen Mingsyan,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
  • 2Aggarwal C C,Proc of the Int’ l Conf on Data Engineering,1998年,402页
  • 3Han J,Proc of Int’ l Conf Very Large Data Bases,1995年,420页
  • 4刘清.算子Rough逻辑及其归结原理[J].计算机学报,1998,21(5):476-480. 被引量:9

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部