期刊文献+

非交换概率空间上的切比雪夫不等式与大数定理 被引量:1

Tchebycheff's Inequality and Law of Large Numbers over Noncommutative Probability Spaces
下载PDF
导出
摘要 研究了非交换概率空间上自伴随机变量的期望、方差、独立性、相关性等性质,证明了关于自伴随机变量的切比雪夫不等式与大数定理。 We study in this paper the expectation, variance, independence and linear dependence of self-adjoint random variables on a noncommutative probability space, and prove Tchebycheff inequality and law of large numbers. We also give a necessary and sufficient condition for two self-adjoint random variables to be linearly dependent.
作者 李绍宽 王勤
机构地区 东华大学理学院
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期21-22,51,共3页 Journal of Donghua University(Natural Science)
基金 上海市科委自然科学基金的资助 项目编号:01ZA14003
关键词 非交换概率空间 切比雪夫不等式 随机变量 大数定理 切比雪夫不等式 noncommutative probability space, random variable, spectral theory, Tchebycheff inequality, the law of large numbers
  • 相关文献

参考文献2

  • 1Voiculescu D V, Dykema K J, Nica A. Free Random Variables.Providence: AMS Press, 1992:26 - 37.
  • 2Conway B. A course in functional analysis. New York: Springer-Verlag,1990:248 - 267.

同被引文献6

  • 1李炳仁.算子代数[M].北京:科学出版社,1998..
  • 2Voiculescu D. The analogues of entropy of Fisher's information measure in free probability theory Ⅱ [J]. Invent Math, 1994, (118) : 411-440.
  • 3Voiculescu D. The analogues of entropy of Fisher's information measure in free probability theory Ⅲ: The absence of Cartan subalgebras [J]. Geom Funct Anal, 1996, (6): 172-199.
  • 4Ge L M, Shen J H. On free entropy dimension of finite von Neumann algebras [J]. Geom Funct Anal, 2002, (12) : 546-566.
  • 5Voiculeseu D, Dykema K J, Nica A. Free random variables [M]. Providence: The American Mathematical Society Press, 1992, 14-17.
  • 6Kadison R V, Ringrose J R. Fundamentals of the theory of operator algebras(Ⅰ,Ⅱ) [M]. Graduate Studies in Mathematics, Volume 15, The American Mathematical Society, 1997.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部