摘要
设{W(t),t>0}是标准Wiener过程,M(t)=max|W(s)|,v(t)是M(t)的定位,即|W(v(t))|=M(t),本文证明了((1/t)v(t),(M(t))/(2tloglogt^(1/2)))的极限点集(t→∞)以概率1是K={(x,y),0≤x≤1, 0≤y≤1,x≥y^2}.
Let {W(t),t≥0} be a standard Wiener process, M(t)=max |W(s)|,
and let v(t) be the location of M(t) i.e. |W(v(t))| =M(t). In this paper,
it is proved that the set of limit points of (1/tv(t), ) (t→∞)
fs K = {(x,y) :0≤x≤1,0≤y≤1,x≥y2} a.s..
出处
《杭州大学学报(自然科学版)》
CSCD
1992年第2期125-128,共4页
Journal of Hangzhou University Natural Science Edition
基金
国家自然科学基金
霍英东教育基金
浙江省自然科学基金资助的课题