摘要
本文沿用[2]的方法,把球面上紧致极小子流形纯量曲率的拚挤常数改进为n^2-4n(2n+1)/(5n+2).
By the method of [2], we improve a result of [2] as follows : Theorem Let Sn+p be a unit (n+p)-sphere and Mn→Sn+p (n≥2) be
compact minimal submanifold of Sn+p. If R≥n2-4n(2n + 1)/(5n + 2) or equivalently ||σ||2≤n(3n + 2)/(5n + 2),
where R and ||σ||2 are the scalar curvature and the length square of thesecond fundamental form of Mn, respectively, then either Mn is totally
geodesic or n=2 and M2 is the Feronese surface in S4.
出处
《杭州大学学报(自然科学版)》
CSCD
1992年第3期261-264,共4页
Journal of Hangzhou University Natural Science Edition
基金
国家自然科学基金
浙江省自然科学基金资助的课题
关键词
极小子流形
纯量曲率
拚挤常数
minimal submanifold
scalar curvature
pinching constant