期刊文献+

基于正交小波包的水下宽带回波特征提取与识别 被引量:13

On Improving Feature Extraction and Identification of Underwater Wideband Echo with Orthogonal Wavelet Packet
下载PDF
导出
摘要 水下目标的自动识别是水声设备智能化的关键技术之一。在对目标回波进行正交小波包分析的基础上 ,提取信号在各分解子空间的能量以构成回波的特征空间。给出了两种衡量各特征识别能力的准则 ,而且基于这两种准则解决了小波包分析中的频率重叠问题 ,用它们对莱蒙湖 (又名日内瓦湖 ,Geneva Lake)湖底 4类沉积物的反射回波进行了特征提取和分类 ,比较了两种准则所提取特征的分类结果 。 The application of Mallat algorithm to the feature extraction and identification of underwater wideband echo is, not satisfactory in the identification of wideband echo in high frequency range. But the wavelet packet algorithm is potentially satisfactory in both low and high frequency ranges. We used the to decompose target echoes. Then the feature vector included the energy of every subband of echo. We proposed two criteria for the feature selection. With either criterion, we could achieve two goals: the simplification of feature vector by discarding components that contain little discriminating information and solution of the block overlap problem of frequency bands. We applied the two criteria to feature the extraction and identification of four kinds of wideband echoes of the bottom sediments of Geneva Lake. The comparison results show that the proposed method can improve the feature extraction and identification of underwater wideband echo.
作者 马艳 李志舜
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2003年第1期54-57,共4页 Journal of Northwestern Polytechnical University
关键词 正交小波包 特征提取 目标分类 水下宽带回波 水下目标 自动识别 Algorithms Feature extraction Object recognition
  • 相关文献

参考文献3

二级参考文献11

共引文献64

同被引文献109

引证文献13

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部