期刊文献+

一种设计参数型的有限元模型修正方法 被引量:5

A METHOD OF FINITE ELEMENT MODEL UPDATING VIA DESIGN PARAMETERS
下载PDF
导出
摘要 本文提出了一种设计参数型的有限元模型修正方法。依据正交条件,采用系统矩阵对设计参数的台劳展开式,建立参数修改量的线性方程式,用奇异值分解方法求解。在本方法中充分考虑了试验模态参数误差的影响,及试验振型自由度扩充等问题。计算机仿真及实际算例的结果表明,本方法计算量小、精确度较好。 What is presented in this paper is a method of finite element model updating via design parameters using test modal data. Based on orthogonality relation ships, the method adjusts the design parameters instead of the elements of mass and stiffness matrices. The Taylor's series of the system matrices expanded with respect to design parameters is adopted. The conducted set of linear equations is solved by a singular value decomposition technique. Because of the linear relation of system matrices with the most design parameters, the method is suitable to the cases of the severe change of the parameters, and the parameters converge to the “true value” by only several iterations. The problems, such as the effect of errors on the test modal parameters, the expansion of the degree of freedoms of test mode shapes, etc, are handled. The weighted global fit procedure is used to pre-process the test mode shapes- to smooth the shapes and expand the degree of freedoms of the shapes simultaneously. The method can not be only applied to the finite element model updating, but also to the structural dynamics redesign. Numerical and practical examples show the efficiency and accuracy of the method.
出处 《航空学报》 EI CAS CSCD 北大核心 1992年第1期A029-A035,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金
关键词 结构模型 有限元法 动态试验 structural model, finite element method, dynamic experiment
  • 相关文献

同被引文献33

  • 1李书,冯太华,范绪箕.动力模型修正中逆特征值问题的数值解法[J].计算结构力学及其应用,1995,12(3):276-280. 被引量:5
  • 2戴华.矩阵特征值反问题的若干进展[J].南京航空航天大学学报,1995,27(3):400-413. 被引量:11
  • 3陈学前,杜强,冯加权.基于结构参数不确定性的有限元模型修正[J].机械科学与技术,2007,26(8):965-968. 被引量:6
  • 4Joseph K T. Inverse eigenvalue problom for structural design[ J] .AIAA J, 1992,30(12) :2891-2896.
  • 5Friedland S, Nocedal J, Overton M L. The formulation and analysis numerical methods for inverse eigenvalue problem[ J ]. SIAM J Numer Anal, 1987,24(3) :634-667.
  • 6Allgower E, Georg K. Simplicial and continuation methods for approximating fixed points and solutions to systems of equations[J]. SIAM Review, 1980, (22) :28-85.
  • 7Chu M T. Solving addition inverse eigenvalue problems by homotopy method [ J ]. IMA J Numer Anal, 1990, (9) :331-342.
  • 8Aruch M. Optimal correction of mass and stiffness matrices using measured modes [ J ]. AIAA J,1982,20( 11 ): 1623-1626.
  • 9Aily R L. Eigenvector derivatives with repeated eigenvalues[J]. AIAA J, 1989,27(4):486-491.
  • 10Baruch M.Optimization procedure to correct stiffness and flexibility matrices using vibration test[J].AIAA Journal,1978,16(1):1208 -1210

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部