摘要
This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.
This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.
基金
the Scientific Research Foundation of Hunan Provincial Education Department, No. 02B021, and the National Natural Science Foundation of China, No. 10171008.