期刊文献+

基于模糊逻辑与神经网络的高层结构半主动控制 被引量:5

Study on semi active control of high rise structuresbased on fuzzy logic and artificial neural network
原文传递
导出
摘要 根据剪切型结构动力特性提出AVSD开关控制律。把开关控制律作为专家知识,利用模糊逻辑转化为模糊控制规则。为了进行时滞和结构动力特性时变的控制补偿,采用神经网络在线自适应跟踪辨识方法进行在线辨识和响应预测。最后以某框架结构为例进行仿真分析,结果表明这一方法控制效果及鲁棒性好、实际应用方便可靠。 According to the dynamic characteristics of high rise shear type structure, this paper presents a semi active control method for engineering structures based on Fuzzy Logic and Artificial Neural Networks. In this method, the on off switch law applied to AVSD system is used as the expert knowledge and the Fuzzy Logic theory is transformed to fuzzy control law. Based on this control, the AVSD fuzzy control system is formed. In order to improve the control resulting from time delay and solve the time varying problem of structural dynamic characteristics existing in the vibration course, neural network on line self adaptive tracing identification method is used to predict the structural dynamic responses and identify the structural dynamic characteristics. At last, computer simulation analysis for a frame structure is carried out. The results indicate that this method has remarkable control effect and robustness, and is convenient and reliable to be used in practice.
作者 何玉敖 李江
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2003年第2期33-37,共5页 Journal of Building Structures
基金 九五国家自然科学基金重大项目(59895410) 国家自然科学基金资助项目(50078037)。
关键词 模糊逻辑 神经网络 高层结构 AVSD控制 时滞 框架结构 AVSD control time delay parameter time varying Fuzzy Logic Artificial Neural Network
  • 相关文献

参考文献2

二级参考文献5

  • 1何玉敖,第二届全国建筑振动学术会议论文集,1997年
  • 2何玉敖,Transactions of Tianjin University.2,1996年
  • 3徐植信,结构地震反应分析,1993年
  • 4Chung L L,J Engrg Mech ASCE,1989年,115卷,8期,1609页
  • 5Yang J N,J Eng Mech,1987年,113卷,1369页

共引文献27

同被引文献50

  • 1[3]Zenon Waszczyszyn,Leonard Ziemianski.Neural Network in Mechanics of Structures and Materials--New Results and Prospects of Application.Computers & Structures,2001,79:2 261-2 276
  • 2[4]Sato T,Sato M.Structure Identification Using Neural Network and Kalman Filter Algorithms.Strucctural Eng./Earthquake Eng.JSCE.1997,14(1):23-32
  • 3[5]Chung Bang Yun,Eun Young Bahng.Substructural Identification Using Neural Networks.Computers & Structures,2000,77:41-52
  • 4[6]Wu X,Ghabouss J,Garrett J H.Use of Neural Network in Detection of Structural Damage Computers & Structures,1992,42(4):649-659
  • 5[7]Kao C Y,Shih Lin,Hung.Detection of Structural Damage Via Free Vibration Responses Generated by Approximating Artificial Neural Networks.Computers & Structures,2003,81:2 631-2 644
  • 6[8]Chassiakos A G,Masri S F.Modeling Unknown Structural Systems Through the Use of Neural Networks.Earthquake Engineering and Structural Dynamics,1996,25:117-128
  • 7[17]Koh C G,Hong B,Liaw C Y.Parameter Identification of Large Structure Systems in Time Domain.Journal of Structural Engineering,2000(8):957-963
  • 8[18]Koh C G,Hong B,Liaw C Y.Substructiral and Progressive Structural Identification Methods.Engineering Structures,2003,25:1 551-1 563
  • 9[22]Liang Y C,Feng D P,Liu G R,et al.Neural Identification of Rock Parameters Using Fuzzy Adaptive Learning Parameters.Computers & Structures,2003,81:2 373-2 382
  • 10[23]Pierre Argoul.Linear Dynamical Identification:an Intergral Transform Seen as a Complex Wavelet Transform.Meccanica,1997,32:215-225

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部