摘要
利用BP神经网络在处理非线形问题上的优势来处理大型水泵机组的传递函数的非线形。并结合遗传算法寻找适合机组传递函数的最佳网络拓扑结构,为了控制的实时性要求网络的结点尽可能的少,因此在遗传算法的适应度函数中将时间的因素考虑进去。结果是,考虑时间的算法得到的网络结构要优于不考虑时间的算法所得到的网络结构。
The neural network has better capacity for dealing with nonlinear matter in order that the large pump sets has nonlinear transmission function. To find the best the topological structure of the network fitting the transmission function of the pump sets with the Genetic Algorithm.Fewer network nodes can improve the realtime control so that the time factor includes in the fitness function of the Genetic Algorithm. As a result, the Genetic Algorithm including time factor are superior to the Genetic Algorithm excluding time factor.
出处
《北京机械工业学院学报》
2003年第1期1-4,共4页
Journal of Beijing Institute of Machinery
基金
国家自然科学基金资助项目[59775002]