摘要
本文的目的是研究算子方程Tx+Cx=f的可解性问题,其中T为增生算子,C为紧的或连续有界算子。用度理论,主要是Leray-Schauder度理论建立了一些满射定理,这些结果是作者[12]的继续,且推广和改进了Kartsatos[7,9]及Hirano[5]中的有关结果。
In this paper we study the solvability of the equation Tx+Cx = f
where T is an accretive operator and C is compact or both continuous and bounded opera-tor.The methods employed in this paper involve degree theory argument. We establish some surjectivity theorems by using the theorey of Leray-schauder degree and solving the approximating equations Tx+Cx+( 1 / n)x = f.
Our theorems complement and extend certain results of the author in[12],of Kartsatos in [7,9]and of Hirano[5].
出处
《河北大学学报(自然科学版)》
CAS
1992年第3期11-17,共7页
Journal of Hebei University(Natural Science Edition)