期刊文献+

泛连通图和邻域并条件 被引量:2

Pathconnected Graphs with Neighborhood Union Conditions
下载PDF
导出
摘要 刻划2连通图在条件NC≥n-δ+1下的Pnm泛连通图性.得到结果:2连通n阶图G,若NC≥n-δ+1,则G是Pn6泛连通图或G2:(Ks+Kh). Let Pnmpathconnected denote the graph of each pair of vertices that has paths each order from m to n, the following result is obtained: for a 2connected graph of order n(n≥6), if NC≥n-δ+1, then G is Pn6pathconnected graphs or G=G2: (Ks+Kh), the result has also improved some results by Faudree et al and Wei Bing, Zhu Yongjun.
机构地区 琼州大学数学系
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2003年第2期162-165,共4页 Journal of Jilin University:Science Edition
关键词 泛连通图 邻域并 哈密尔顿图 点泛圈图 有限图 最小度 pathconnected graphs neighborhood unions paths
  • 相关文献

参考文献3

二级参考文献8

  • 1[1]Holland J H. Adaptation in Natural and Artificial Systems [M]. Michigan: University of Michigan Press, 1975.
  • 2[2]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Boston.. Addison-Wesley Publish, 1989.
  • 3[3]Colin D Green. The Generalization and Solving of Timetable Scheduling Problems [C]. In: Lance D Chambers, ed. Practical Handbook of Genetic Algorithms Complex Coding Systems, Volume Ⅱ. Boca Raton: CRC Press, 1999.
  • 4[4]Bierwirth C, Mattfeld D. Production Scheduling and Rescheduling with Genetic Algorithms [J]. Evolutionary Computation, 1999, 7(1): 1~17.
  • 5[5]Bierwirth C, Mattfeld D, Kopfer H. On Permutation Representations for Scheduling Problems [C]. In: Voigt H M, Ebeling W, Rechenberg I, et al, eds. Proceedings of Parallel Problem Solving from Nature (IV). Berlin: Springer Verlag, 1996. 310~318.
  • 6[6]Muth J F, Thompson G L. Industrial Scheduling [M]. Englewood Cliffs, NJ: Prentice-Hall, 1963.
  • 7Wei Bing,Graphs and Combinatorics,1998年,14卷,263页
  • 8宋增民,图论与网络最优化,1990年

共引文献13

同被引文献14

  • 1侴万禧.高阶Steiner三连系及其构造方法[J].安徽理工大学学报(自然科学版),2004,24(3):76-80. 被引量:11
  • 2侴万禧.r×t阶Kirkman三连系构造的一种方法[J].数学的实践与认识,2004,34(9):144-150. 被引量:11
  • 3侴万禧.2t名运动员的循环赛和对集的划分[J].安徽理工大学学报(自然科学版),2006,26(1):64-69. 被引量:11
  • 4BELA BOLLOBAS.Graph Theory[M].New York:Springer-Verlag,1990.
  • 5TUTTE W T.Graph Theory[M].Combridge:Combridge University Press,2001.
  • 6LOWELL W BEINEKE,ROBIN J WISLSON.Selected Topics in Graph Theory[M].Londen:Academic Press,1978.
  • 7曲诗材.一种求无向图中全部哈密顿回路的新算法.长春邮电学院学报,1988,16(3):41-45.
  • 8曲诗材.一类全着色图研究.长春邮电学院学报,1988,16(4):41-44.
  • 9VANLINT J H, WILSON R M. A Course in Combinatorics [M]. Beijing: China Machine Press, 2004.
  • 10FRED S ROBERTS, BARRY TESMAR. Applied Combinatorics [ M ]. Beijing: China Machine Press, 2007.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部