期刊文献+

高比强泡沫铝合金中空层合圆管的性能 被引量:14

Performance of hollow cylindrical sandwich with high speicific strength foamed Al alloy core
下载PDF
导出
摘要 设计制备了高比强泡沫铝合金中空层合圆管,测出了圆管的压缩应力-应变(σ-ε)曲线并研究了其性能.圆管与泡沫铝合金的压缩σ-ε曲线相似,但有较小波动;圆管的弹性模量与面板的弹性模量成线性关系,线性系数为η+α(0.5η2+0.3η)(1-η);泡沫铝合金中空层合圆管的紧实应变(εD)可用泡沫铝合金的εD表示.由σ-ε曲线计算出圆管的能量吸收性能,发现其吸能能力(W)大约比铝合金面板和泡沫铝合金的吸收能量之和高60%,吸能效率(E)高于60%.泡沫铝合金中空层合圆管具有轻质(ρ<1)特性,但是其压缩比强度σ/ρ和压缩比刚度E/ρ是泡沫铝合金相应参数的3倍. The hollow cylindrical sandwich of foamed Al alloy with high specific strength was prepared in order to improve the ability of energy absorption. The stress-strain (σ-ε) curves of the sandwich were measured and the properties of the hollow cylindrical sandwich were investigated. The compressive stress-strain curves of hollow cylindrical sandwich is similar to that of foamed Al alloy but have a little fluctuation. There is a linear relationship between elastic module of the hollow cylindrical sandwich and that of the face sheet, and the linear factor is η+α (0.5η2+0.3η)(1-η). The densification strain (εD) of the hollow cylindrical sandwich can be expressed by using that of foamed Al alloy. The energy absorption property (W, E) was obtained from the curves ofσ-ε, the energy absorption capacity W is about 60% higher than the sum of that of the face sheet and the foamed Al alloy, and the energy absorption efficiency E is higher than 60%. The p of the hollow cylindrical sandwich is <1 and the compression specific strength (σ/ρ) and compression specific rigidity (E/ρ) are 3 times that of foamed Al alloy respectively.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2003年第2期162-168,共7页 Chinese Journal of Materials Research
基金 国家自然科学基金 No.50231010 90205005和50081002
关键词 材料 合成 加工工艺 吸能性能 压缩 泡沫铝合金 比刚度 比强度 中空层合圆管 synthesizing and processing technics for materials, energy absorption property, compression, foamed Al alloy, specific rigidity, specific strength
  • 相关文献

参考文献16

  • 1[1]M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley, Metal.Metal Foams,(U.S.A., Butterworth-Heinemann, 2000) p.1, p.53, p.157~161
  • 2[2]L.J.Gibson, M.F.Ashby, Cellular Solids-Structures and Properties, Second Edition, (Great Britain, Cambridge University Press, 1999) p.5
  • 3[3]WU Zhaojin, HE Deping, Changes in porosity of Foamed Al during Solidification, Chinese Science Bulletin,45(18), 1667(2000)
  • 4[4]Yang Donghui, He Deping, Porosity of Porous Al Alloy, Science in China (B), 44(4), 411(2001)
  • 5[5]John Banhart, M.F.Ashby, N.A.Fleck, in Cellular Metals and Metal Foaming Technology, Edited by John Banhart, M.F.Ashby, N.A.Fleck (Germany, Verlag MIT, 2001) p.37
  • 6[6]John Banhart, M.F.Ashby, N.A.Fleck, in Metal Foams and Porous Metal Structures, Edited by John Banhart, M.F.Ashby, N.A.Fleck (Germany, Verlag MIT, 1999) p.313
  • 7[8]ZHENG Mingjun,HE Deping,DAI Ge,Additional force field inthe cooling process of the cellular Al alloy,Sciencein China(B),45(6),598(2002)
  • 8[11]Kathryn A. Dannemann, James Lankford Jr., High strain rate compression of closed-cell aluminium foams,Materials Science and Engineering A, 293, 157(2000)
  • 9[12]A.Paul, U.Ramamurty, Strain rate sensitivity of a closed-cell aluminum foam, Materials Science and Engineering A, 281, 1(2000)
  • 10[13]H.Kanahashi, T.Mukai, Y.Yamada, K.Shimojima, M.Mabuchi, T.G.Nieh, K.Higashi, Dynamic compression of an ultra-low density aluminium foam, Materials Science and Engineering A, 280, 349(2000)

同被引文献125

引证文献14

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部