期刊文献+

生物陶瓷骨内植入后与组织间的界面研究 被引量:2

Study on the interface between tissue and bioceramic implanted into bone
下载PDF
导出
摘要 将β-TCP陶瓷植入大白兔的股骨内并定期注射四环素,分别在光学显微镜、荧光显微镜或扫描电子显微镜下观察新骨的形成和成骨过程,研究了β-TCP植入体内后与组织间的界面作用以及磷酸钙生物陶瓷的成骨作用。结果表明,在类骨质表面有大量的成骨细胞,间充质细胞增生和浸入。植入β-TCP陶瓷两个月后,类骨质通过钙化转变为编织骨。植入三个月后,出现由骨桥连接的“骨岛”,β-TCP陶瓷降解,并被新骨分散。植入六个月后,新的骨髓腔形成,编织骨变成板层骨。八个月后,在哈弗氏骨板上出现材料颗粒,形成典型的松质骨结构。因此,无生命的钙磷材料在体内可以参与有生命的组织活动。 The interface of porous β-TCP ceramics implanted in rabbit was investigated in order to study the osteogenesis of calcium phosphate bioceramics. β-TCP ceramics (5 mm diameter and 8 mm height) were implanted in the femur of rabbits, and tetracycline was injected termly. The samples of bone were taken 1, 2, 3, 4, 5, 6 or 8 months after operation, respectively. The new bone formation and osteogenesis process on the interface were observed by using the light microscope, fluorescent microscope, scanning electron microscope and histochemical test. The results showed that bone formation rate increased faster than that of contrast groups. The interface was visible 1 month after operation, and osteogensis was active. There were abundant osteoblasts, mesenchymal cell hyperplasia and incursion on the surface of osteoid. The osteoid turned into woven bone through calcification 2 months after operation. Bone-island appeared and connected by bone-bridge 3 months after operation. β-TCP ceramics degraded and were dispersed by new bone. New marrow cavity formed and woven bone became bone lamella 6 months after operation. The granules of material were found on the Haversian lamella 8 months after operation. The typical structure of spongy bone formed. It can be concluded that the non-living calcium-phosphate materials can participate in the activity of living tissue in vivo.
机构地区 武汉理工大学
出处 《材料研究学报》 EI CAS CSCD 北大核心 2003年第2期198-204,共7页 Chinese Journal of Materials Research
基金 Supported by the National Key Fundamental Research Project G1999064701.
关键词 β-TCP生物陶瓷 界面 成骨作用 生物降解 骨内植入 成骨过程 磷酸钙 inorganic non-metallic materials, β-tricalcium phosphate, β-TCP ceramics implant, interface, osteogenesis, biodegradation
  • 相关文献

参考文献15

  • 1[1]C.Delloye, Considerations actuelles surles greffes, Calcified tissues and biomaterials, In: Harmond MF, edited by Biomat Edn, (Bordeaux, France, 1987) p.149
  • 2[2]Mark borden, Mohamed Attawia, Cato T. Laurencin, The sintered microsphere matrix for bone tissue engineering, Vitro Osteoconductivity Studies, J Biomed Mater Res, 61(3), 421(2002)
  • 3[3]T.Kokubo, T.Hayashi, S.Sakka, E.Tsuji, Ceramics in clinical applications. In: Vincenzini, edited by (Amstedam, Elsevier, 1987) p.175
  • 4[4]Jose Moreno, Francisco Forriol. Biomaterial. Effects of preservation on the mechanical strength and chemical composition of cortical bone, an experimental study in sheep femora, 23(12), 2615(2002)
  • 5[5]T.J.Gao, T.S.Lindholm, B.Kommonen, Z.Zoltan, bioactive glass and tricalcium phosphate implanted in sheep diaphyseal defects, Microscopic evaluation of bone-implant contact between hydroxyapatite, Biomaterials, 16, 1175(1995)
  • 6[6]G.Daculsi, N.Passuti, S.Martin C.Deudon, Calcium phosphate ceramics for long bone surgery in humans and dogs, clinical and histological study, J Biomed Mater Res, 24, 379~392(1990)
  • 7[7]S.Kotani, Y.Fujita, T.Kitsugi, S.Kotani, Bone bonding mechanism of β-TCP, J Biomed Mat Res, 25,1303(1991)
  • 8[8]Satoshi Nakamura, Takayuki Kobayashi, Kimihiro Yamashita, Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges, J Biomed Mater Res, 61(4), 593(2002)
  • 9[9]H.Oonishi, T.Jassuti, G.Ninholm, C.Ohtsuki, Orthopaedic applications of hydroxyapatite, Biomaterials, 2,171(1991)
  • 10[10]Keita Abe, Ichiro Ono, A comparison of the shapes of hydroxyapatite implants before and after implantation,J Biomed Mater Res, 63(3), 312(2002)

同被引文献30

  • 1孙璐薇,冉均国,苟立,季金苟.微波烧结多孔β-TCP/HA双相生物陶瓷的性能[J].材料研究学报,2004,18(4):429-434. 被引量:1
  • 2宁成云,王迎军,陈晓峰,赵娜如.梯度结构羟基磷灰石生物活性涂层的性能[J].材料研究学报,2006,20(1):69-72. 被引量:10
  • 3贺定勇,赵力东,BOBZIN Kirsten,LUGSCHEIDER Erich.等离子喷涂AP40生物活性玻璃陶瓷涂层的结构和性能[J].无机材料学报,2006,21(3):759-763. 被引量:4
  • 4Wilson RM, Dowker SEP, Elliott JC. Rietveld refinements and spectroscopic structural studies of a Na - free carbonate apatite made by hydrolysis of monetite [ J ]. Biomaterials, 2006, 27 (27) :4682 -4692.
  • 5Moulder, John F. Handbook of x -ray photoelectron spectroscopy[ M]. Physical Electronics, 1995:213 -242.
  • 6Lagier R, Baud C A. Magnesium whidockite, a calcium phosphate crystal of special interest in pathology [ J ]. Pathol Res Pract ,2003,199 (5) :329 -335.
  • 7Ergun C, Webster TJ, Bizios R, et al. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I structure and microstructure[J ]. J Biomed Mater Res , 2001 , 59(2) :305 - 311.
  • 8Jallot E, Nedelec JM, Gfimault AS, et al. STEM and EDXS characterisation of physico -chemical reactions at the periphery of sol -gel derived Zn -substituted hydroxyapatites during interactions with biological fluids[J]. Colloids and and surfaces B : Biomaterials, 2005,42:205 -210.
  • 9Okazaki M. Crystallographic behaviour of fluoridated hydroxyapatites containing Mg^2+ and CO3^2- ions [ J ]. Biomaterials, 1991,12 ( 9 ) : 831 - 835.
  • 10Karman S, Ventura JM, Ferreira JMF. Aqueous precipitation method for the formation of Mg - stabilized β- tricalcium phosphate: An X -ray diffraction study [J ]. Ceram lnt, 2007, 33(4) :637 -641.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部