摘要
用主方程方法研究分子马达一维周期性四态等间距随机跃迁模型,得出在任意位置任意时刻马达几率分布的解析表达式;讨论了分子马达随机跃迁的暂态特征及其特征时间,得出几率随时间的演化规律由跃迁速率常数和初始条件共同决定,而到达稳态的特征时间只由跃迁速率常数决定.
The stochastic master equation approach to molecular motor's directed motion is used and a periodic one-dimensional four-state hopping model based on actual biology setting is established. An explicit solution is obtained for the probability distribution as a function of the time and position when any initial distribution is given, and the drift velocity v, the diffusion constant D and the randomness parameter r of can all be obtained. In addition, the transient behavior and the characteristic time to reach steady state for the motor are analyzed. We take conclusions that the transient behaviors relate to the transition rates and the initial condition, and the characteristic time is determined by the transition rates.
出处
《河北工业大学学报》
CAS
2003年第2期15-20,共6页
Journal of Hebei University of Technology
基金
国家自然科学基金资助(10075007)
河北省自然科学基金资助(102001)
河北省博士基金资助(00547001D)
关键词
分子马达
几率分布
暂态特征
特征时间
molecular motor
probability distribution
transient characteristic
characteristic time