期刊文献+

基于神经网络的非线性预测自整定PID控制 被引量:3

Predictive Self-tuning PID Control of Nonlinear System Based on Multiplayer Neural Networks
下载PDF
导出
摘要 提出在利用前馈神经网络对非线性系统建模的基础上,对系统输出实现递推多步预测,并且结合自整定PID方法,实现非线性系统控制,神经网络在线辨识时采用学习速度较快的扩展Kalman滤波方法,仿真实验表明了该方法的有效性. In order to control a nonlinear system, a model of recurrent multi-step prediction of the future process outputs which is constructed based on multiplayer neural network is developed and combined with a self-tuning PID controller. In the control process, an extended Kalman filter algorithm is introduced to quicken neural training. Simulation studies show the effectiveness and good performance.
出处 《河北工业大学学报》 CAS 2003年第2期21-24,共4页 Journal of Hebei University of Technology
基金 国家自然科学基金资助项目(60174021) 国家科技攻关计划资助项目(2001BA204801-02)
关键词 多步预测 神经网络 PID控制 非线性系统 扩展Kalman算法 multi-step predict neural networks PID control non-linear system EKF algorithm
  • 相关文献

参考文献5

  • 1[1]Narendra K S,Zafiriou E.Identification and control of dynamical systems using neural networks[J]. IEEE trans.on Neural networks, 1990,1(1):4-27.
  • 2[2]Prasad G,Swidenbank E,Hogg B W.A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control[J].IEEE trans.On Energy conversion,1998,13(2):176-182.
  • 3[3]Yonghong Tan,Achiel R,Van Cauwenberghe.D-step-ahead non-linear predictors using neural networks[J].14th World Congress of IFAC, 1999:317-322.
  • 4[4]Aritoshi Kimura,Ikuo Arizono,Hiroshi Ohta.A improvement of a back propagation algorithm by the extended Kalman filter and demand forecasting by layered neural networks[J].Int.J.system and science,1996,27(5):473-482.
  • 5[5]Clarke D W,Mohtadic,Tuffs P S.Generalized Predictive Control Part I and Part II[J].Automatica,1987,23(1):137-160.

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部