期刊文献+

一类广义集值变分包含组的逼近算法 被引量:2

The appoximation alogrithms of a system of generalized set valued variational inclusions
下载PDF
导出
摘要 利用预解算子技巧讨论了一类广义集值变分包含组,给出了求其解的逼近算法,并证明了这种算法的强收敛性,所得结论是新的,从而推广了这方面的相应结果. By using the resolvent operator technique,this paper introduces and studies a system of generalized set-valued variationl inclusions.An iterative algorithm to compute appoximate solution is provided.It is proved that the iterative algorithm converges are strong to the solution of the system of the variational inclusion.The present results are new,and generalize some recent results in the field.
作者 李克俊
出处 《贵州师范大学学报(自然科学版)》 CAS 2003年第2期4-7,21,共5页 Journal of Guizhou Normal University:Natural Sciences
关键词 广义集值变分包含组 预解算子 逼近算法 强收敛性 非线性泛函分析 迭代算法 generalized set-valuded variational inclusions resolvent operator iterative algorithm strong convergence
  • 相关文献

参考文献1

二级参考文献5

  • 1Huang N,Comput Math Appl,2000年,40卷,2/3期,205页
  • 2Yuan G X Z,KKM Theory and Applications,1999年
  • 3Huang N J,Z Angew Math Mech,1999年,79卷,8期,569页
  • 4Huang N,J Comput Math Appl,1998年,35卷,10期,1页
  • 5Huang N J,J Math Anal Appl,1997年,216卷,197页

共引文献21

同被引文献23

  • 1郑莲,张清邦,胡本琼.用扰动逼近算法解广义混合拟似变分不等式组[J].四川师范大学学报(自然科学版),2004,27(6):569-573. 被引量:5
  • 2Fang Y P, Huang N J. H- Monotone operator and resolvent operator technique for variational inclusions[J]. Appl Math Compu,2003,145(2~3):795~803.
  • 3Verma R U. Projection methods, algorithms,and a new system of nonlinear variational inequalities[J]. Appl Math Compu,2001,41(7):1025~1031.
  • 4Nalder S B Jr. Multivaluded contraction mappings[J]. Pacific J Math,1969,30:457~488.
  • 5Verma R U. Projection methods, algorithms and a new system of nonlinear variational inequalities[J]. Comput Math Appl,2001,41:1025 ~1031.
  • 6Verma R U. Partially relaxed monotone mapping and a system of nonlinear variational inequalities[J]. Nonlinear Funct Anal Appl,2000,5(1):65~72.
  • 7ChenX F,Deng C X,Tan M Y.New approximation algorithms for a system of generalized nonlinear variationalinequalities[J].J Sichuan Univ(Natural Science),2001,38(6):813~817.
  • 8Lee C H, Ansari Q H, Yao J C. A perturbed algorithms for strongly nonlinear variational-like inclusion[J]. Bull Austral Math Soc,2000,62:417 ~ 426.
  • 9Huang N J, Fang Y P. A new class of general variational inclusions involving maximal monotone mappings[J]. Publ Math Debrecen,2003,62/1-2:83 ~ 98.
  • 10Ding X P. Perturbed Ishikawa type iterative algorithm for generalized quasivariational inclusions[ J ]. Appl Math Comput, 2003,141: 359 ~373.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部