期刊文献+

基于谱分解的F-S最佳鉴别平面及舰船识别研究 被引量:2

Optimal F-S Discriminant Plane Based on Spectral Decomposition and Study on Ship Recognition
下载PDF
导出
摘要 Fisher最佳鉴别分析方法已在许多模式识别问题中取得成功应用。Fisher最佳鉴别分析建立在对Fisher最佳鉴别准则的最优化基础上。本文利用对类内矩阵 Sw进行谱分解 ,提出一种在类内矩阵 Sw 的零空间中求解F -S最佳鉴别平面的新方法。我们将此方法应用于红外舰船图象的特征抽取和识别的研究。实验结果表明了该方法的有效性。 Fisher's linear discriminant analysis methods(LDA)were demonstrated their success in the area of pattern recognition.LDA is based on the optimum of Fisher discriminant criterion.In this paper,a new LDA method is presented,which solves the optimal discriminant plane in the null space of within-class scatter matrix using the spectral decomposition of .The experiments were made for the feature extraction and recognition of infrared images of ship.The experimental results show the effectiveness of the new LDA algorithm.
出处 《船舶力学》 EI 2003年第2期116-120,共5页 Journal of Ship Mechanics
基金 国家自然科学基金资助项目(60072034) 中国科学院机器人学开放实验室基金资助项目(RL200108) 江苏省高校自然科学研究计划资助项目(01KJB520002)
关键词 谱分解 舰船识别 特征抽取 Fisher最佳鉴别分析 红外图像识别 F-S最佳鉴别平面 pattern recognition feature extraction disciminant analysis optimal discriminant plane ship recognition
  • 相关文献

参考文献7

  • 1Foley D H,Sammon J W Jr.An optimal set of discriminant vectors[].IEEE Transactions on Computers.1975
  • 2Sammon J W.An optimal discriminant plane[].IEEE Transactions on Computers.1970
  • 3Krzanowski W J.Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data[].Applied Statistics.1995
  • 4Tian Q.Comparison of statistical pattern-recognition algorithms for hybrid processing, II: eigenvector-based algorithm[].Journal of the Optical Society of America.1988
  • 5Cheng Y Q,Yang J Y et al.Optimal fisher discriminant analysis using the rank decomposition[].Pattern Recognition.1992
  • 6Hong Z Q,Yang J Y et al.Optimal discriminant plane for a small number of samples and design method of classifier on the plane[].Pattern Recognition.1991
  • 7Jessical H.Target identification algorithm for the AN/AAS-44V Forward Looking Infrared (FLIR)[]..2000

同被引文献30

  • 1吴小俊,杨静宇,王士同,Josef Kittler,陆介平.改进的统计不相关最优鉴别矢量集[J].电子与信息学报,2005,27(1):47-50. 被引量:8
  • 2JIN Z,YANG J Y,HU Z S,et al.Face recognition based on the uncorrelated discriminant transformation[J].Pattern Recognition,2001,34(7):1405-1416.
  • 3WEBB A R.Statistical pattern recognition[M].2nd ed.New York:Wiley,2002.
  • 4HSIEH P C,TUNG P C.A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition[J].Pattern Recognition,2009,42(5):978-984.
  • 5MYOUNG S P,JIN Y C.Theoretical analysis on feature extraction capability of class-augmented PCA[J].Pattern Recognition,2009,42(11):2353-2362.
  • 6VENKATESH Y V,KASSIM A A,RAMANA MURTHY O V.A novel approach to classification of facial expressions from 3D-mesh datasets using modified PCA[J].Pattern Recognition Letters,2009,30(12):1128-1137.
  • 7FISHER R A.The use of multiple measurements in taxonomic problems[J].Ann Eugenics,1936,:178-188.
  • 8BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.Fisher faces:recognition using class specific linear projection[J].IEEE Trans on Pattern Anal Mach Intell,1997,9(7):711-720.
  • 9SAMMON J W.An optimal discriminant plane[J].IEEE Trans on Computers,1970,9(9):826-829.
  • 10FOLEY D H,SAMMON J W.An optimal set of discriminant vectors[J].IEEE Trans on Computers,1975,24(3):281-289.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部