期刊文献+

一维耦合格点映射中的周期解 被引量:1

Periodic Solutions in One-Dimensional Coupled Map Lattices
下载PDF
导出
摘要  证明了具有最临近耦合的一维耦合格点映射关于时间为周期的非线性解的存在性· 这一类系统能被看成无穷个耦合振子构成的阵列· 给出了估计这类关于时间为周期的解存在的临界耦合强度的一种方法· 对于一些特殊的关于时间为周期的非线性解。 It is proven that the existence of nonlinear solutions with time period in one_dimensional coupled map lattice with nearest neighbor coupling.This is a class of systmes whose behavior can be regarded as infinite array of coupled oscillators.A method for estimating the critical coupling strength below which these solutions with time period persist is given.For some particular nonlinear solutions with time period,exponential decay in space is proved.
出处 《应用数学和力学》 EI CSCD 北大核心 2003年第5期461-465,共5页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10171061)
关键词 耦合格点映射 非线性周期解 反可积极限 LOGISTIC映射 coupled map lattice nonlinear periodic solution anti-integrable limit logistic map
  • 相关文献

参考文献9

  • 1[1]Crutchfield J P,Kaneko K.Phenomenology of spatio-temporal chaos directions in chaos[J].World Scientific Secries Directions in Condensed Matler Physics,1987,1(3):272-353.
  • 2[2]Kaneko K. Pattern dynamics in spatiotemporal chaos[J].Physica D,1989,34(1):1-41.
  • 3[3]Coutinho R,Fernandez B. Extended symbolic dynamic in bistable CML:Existence and stability of fronts[J].Physica D,1997,108(1):60-80.
  • 4[4]Abel M,Spicci M.Nonlinear localized periodic solutions in a coupled map lattice[J].Physica D,1998,119(1):22-33.
  • 5[5]Aubry S,Abramovici G.Chaotic trajectories in the standard map,the concept of anti-integrability[J].Physica D,1990,43(2):199-219.
  • 6[6]Mackay R S, Aubry S.Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators[J].Nonlinearity,1994,7(6):1623-1643.
  • 7[7]Aubry S.Breathers in nonlinear lattices:existence,linear stability and quantization[J].Physica D,1997,103(3):201-250.
  • 8[8]Zeidler E.Nonlinear Functional Analysis and Its Applications,Fixed-Pointed Theorem[M].New York, Berlin, Heidelberg, Tokyo:Springer-Verlag,1986.
  • 9[9]Baesens C,Mackay R S.Exponential localisation of linear response in networks with exponentially decaying coupling[J].Nonlinearity,1997,10(4):931-940.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部