期刊文献+

同余可换的MS-代数

Congruence Permutable MS-Algebras
下载PDF
导出
摘要 MS-代数是从De Morgen代数和Stone代数的共同属性出发抽象而成的一种代数。本文利用MS-代数的对偶空间理论给出了同余可换的MS-代数的一个重要性质。 MS-algebras are considered as a common ion of De Morgan algebras and Stone algebras. In this paper we use the theory of dual spaces of MS-algebras to give an important property of congruence per-mutable MS-algebras.
作者 罗从文
机构地区 三峡大学理学院
出处 《三峡大学学报(自然科学版)》 CAS 2003年第2期174-175,共2页 Journal of China Three Gorges University:Natural Sciences
基金 湖北省教委重点研究项目(2001A5301) 三峡大学博士科研启动基金
关键词 MS-代数 MS-空间 同余可换 STONE代数 MS-algebra MS-space congruence permutable
  • 相关文献

参考文献8

  • 1罗从文.同余可换的Stone代数[J].数学物理学报(A辑),2003,23(3):294-297. 被引量:1
  • 2M. E. Adams,Beazer R,Congruence relations on de Morgan algebras[J]. Algebra Univ. , 1989( 1 ) : 103 -125.
  • 3T. S. Blyth and J. C. Varlet, Congruences on MS-algebras[J].Bul. Soc. Roy. Sci. Liege, 1984(53):341-362.
  • 4Jie Fang, Pseudocomplemented MS-algebras[J]. Alg.Colloq. ,1996(1) :59-65.
  • 5T. S. Blyth and J. C. Varlet, On the dual space of an MS-algebra[J]. Math. Pannonica, 1990( 1 ) : 95- 109.
  • 6Gratzer, G. , General Lattice Theory [M]. Birkhauser Verlag, Basel, 1978.
  • 7H. A. Priestley, Ordered sets and duality for distributive lattices, Ann [ J]. Discrete Math. 1984(23):39-60.
  • 8T. S. Blyth J.C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras [J]. Proc. Roy.Soc. Edinburgh, 1983 (94A) : 301-308.

二级参考文献10

  • 1Priestley H A. Representation of distributive lattices by means of ordered Stone space. Bull London Math, 1970,2:186-190.
  • 2Priestley H A. Stone Lattices: a topological approach. Fund Math, 1974,84:127-143.
  • 3Priestley H A. Ordered sets and duality for distributive lattices. Ann Discrete Math, 1984,23: 39- 60.
  • 4Urquhart A. Distributive lattices with a dual homomorphic operation. Studia Logical, 1979, 38:201-209.
  • 5Adams M E, Beazer R. Congruence relations on de Morgan algebras. Algebra Univ, 1989,1:103-105.
  • 6Balbes R, Dwinger P. Distributive lattices. Columbia,Missouri: University of Missouri Press, 1974.
  • 7Beazer R. Congruence permutability for algebras with pseudocomplementation. Proc Edinburgh Math, 1981,1:55-58.
  • 8Chajda I. Modifications of congruence permutability. Acta Sci Math, 1989,53:225-232.
  • 9Lakser H. Principal congruences of pseudocomplemented distributive lattices. Proc Amer Math Soc, 1973,1:32-36.
  • 10罗从文,裴礼文.MS代数的极大同态象[J].数学物理学报(A辑),1998,18(4):429-432. 被引量:2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部