摘要
利用激光法测定的0~50℃温度范围内咖啡因在水和乙醇中的溶解度数据,经过比较选择了较好的人工神经网络模型—2-2-1向后传播(BP)人工神经网络模型,利用训练后的2-2-1BP人工神经网络模型对非线性的咖啡因溶解度数据进行了再现回归、内插和外推,在水中溶解度数据的回归、内插的误差均在0.07%以内,外推的误差在0.2%以内;在乙醇中的溶解度数据的回归误差在0,07%以内,内插和外推误差均在4%以内,效果十分令人满意。
Based on the solubility of caffeine in water and ethanol from 0 to 501 measured by laser method, a 2 - 2 -1 backpropagation(BP) artificial neural networks(ANN) model was selected from many other ANN models. The regression, interposition and extrapolation of the data on caffeine solubility was taken with trained 2-2-1 BP ANN model. The outcome was very satisfactory.
出处
《化工时刊》
CAS
2003年第4期26-28,共3页
Chemical Industry Times
关键词
人工神经网络
咖啡因
溶解度
建模
热力学
solubility caffeine thermodynamics artificial neural networks