摘要
本文给出了如下的酉辛群上的一条Tauber型收敛定理,若u(U)在酉辛群Usp(2n)上连续,且其Fourier系数满足N(f) sum from i,j-1 to N(f) ((C_(ii)~f)~2)=0(1/L^(2n)),则u(U)的Fourier级数的部分和收敛于u(U).
In this paper, we give the proof of the following theorem by the method ofanalysis: If u(U) is continuous in Usp(2n), and its Fourier series coefficents satisfy the f llowing conditionthen the partial summation of the Fourier series of u(U)convergences to u(U).
出处
《河南大学学报(自然科学版)》
CAS
1992年第2期95-98,共4页
Journal of Henan University:Natural Science
关键词
酉辛群
Tauber型
收敛定理
Unitary symplectic group, Tauberian convergent theorem.