摘要
核主泵轴密封是核电设备的关键部件之一,探究其密封机理,实现国产化设计,具有重大意义.核主泵静压型轴封系统二级密封一般设计为一级密封失效时承受全部载荷.所研究的二级密封结构全压差(15.5 MPa)工作时的密封机理尚不明确.本文中采用流固耦合模型研究了一级密封失效时,二级密封的工作机理.结果表明:一级密封失效时,二级密封是非接触式静压型密封.在压差和动环变形环板变形产生的力的共同作用下,密封端面形成锥角为1 300.9μrad的收敛间隙;当入口水温65℃时,泄漏率为1 867.8 L/h.动环变形环板的变形有阻碍动环变形锥角增大的作用.动环变形环板厚度越大,密封泄漏率越大.密封介质入口温度以及材料的摩擦性能对密封性能亦有影响.此外,一级正常工作时,二级密封是接触式形式,采用混合润滑模型对其性能作了分析,分析表明一级密封正常工作时,二级密封压差约为0.17 MPa,密封为混合润滑状态,泄漏率为11.4 mL/h,端面温升23.9℃.
The mechanical seal in nuclear coolant pumps is important to the safety of nuclear facility. The mechanism of second stage mechanical seal in hydrostatic seal system of nuclear coolant pumps is studied using the mixed lubrication model and fluid- solid interaction model. When the first seal loses efficacy,the second seal is hydrostatic seals. The pressure difference of water,about 15. 5 MPa,causes the rotating ring has a convergent radial taper while the deformation force of elastic ring decreases the radial taper. The face seal has a relatively small convergent radial taper,about 1 300. 9μrad. The leakage rate is 1 867. 8 L/h when the inlet temperature is 65 ℃. The thickness of elastic ring is bigger,the leakage rate is lower. The inlet temperature of water and the friction performance of the material affect the performance of the second seal as well. The second seal is contacting face seal under pressure 0. 17 MPa when the first seal is in normal operating conditions,its leakage rate is 11. 4 mL /h,and temperature rise of water is 23. 9 ℃.
出处
《摩擦学学报》
EI
CAS
CSCD
北大核心
2014年第4期459-467,共9页
Tribology
基金
国家重点基础研究发展规划项目(973)(2009CB724304)
国家科技支撑计划(2011BAF09B05)
国家自然科学基金(51275268)资助~~
关键词
机械密封
静压
核主泵
流固耦合
混合润滑
mechanical seal,hydrostatic,nuclear coolant pump,fluid-solid interaction,mixed lubrication