摘要
记(X,Y)为二元随机变量,F(x)为X的边缘分布函数,定义Y关于X的分位回归函数为h(u)=E(Y\F(X)=u),记S(u)=integral from n=0 to u(J(t)h(t)dt)为加权累计分位回归函数,其中J(·)为权函数,本文讨论了S(u)的经验版本的弱收敛性质。
Let (X, Y) be a bivariate random variable and F(x) the marginal distribution function of X. We define h(u) = E(Y|F(X) = u) as the quantile regression (QR) function of Y on X. The Cumulative QR function S(u) with weighted coefficients is defined as the integral of J(·)h(·) over the range [O,u], where J(·) is the weight function. In this paper, we discuss the convergence properties of its empirical versions.
出处
《应用概率统计》
CSCD
北大核心
2003年第2期161-166,共6页
Chinese Journal of Applied Probability and Statistics
基金
Research partially supported by National Natural Science Foundation of China(19631040),Ph.D.Program Foundation of Ministry of Education of China and Special Foundation of Academia sinica.
关键词
D空间
C空间
分位回归函数
强相合性
弱收敛
相伴次序统计量
Function spaces D and C, quantile regression function, strong consistency, weak convergence, induced order statistics. ]T